On the Reactivity of Ammonia in Metal-Organic Frameworks
Project/Area Number |
19K23648
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
0502:Inorganic/coordination chemistry, analytical chemistry, inorganic materials chemistry, energy-related chemistry, and related fields
|
Research Institution | The University of Tokyo (2020) Tokyo Institute of Technology (2019) |
Principal Investigator |
Ogiwara Naoki 東京大学, 大学院総合文化研究科, 助教 (70848267)
|
Project Period (FY) |
2019-08-30 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 多孔性金属錯体 / ナノ結晶 / 触媒 / ポリオキソメタレート / イオン伝導 / 金属ナノ粒子 / アンモニア |
Outline of Research at the Start |
本研究では多孔性金属錯体(MOF)に吸着されたアンモニア分子が、バルク状態とは異なる化学状態を有することに着目し、その特異なアンモニア分子の化学反応性を理解することを目指す。そのために、高い触媒反応性を有する金属ナノ粒子に着目し、金属ナノ粒子とMOFを複合化させた研究対象となる新たな物質系を開拓する。 さらに、MOFの高い設計性を活かし、その細孔サイズや細孔環境を適切に設計することにより、MOF細孔中に束縛されたアンモニアの化学状態の制御、さらにはアンモニアの反応活性の制御を試みる。
|
Outline of Final Research Achievements |
The reactivity of H2O vapor in metal-organic frameworks (MOFs) was first studied with Pt nanocrystals (NCs) through the water-gas shift (WGS) reaction. A water-stable MOF, UiO-66, serves as a highly effective support material for the WGS reaction compared with ZrO2. The origin of the high catalytic performance was investigated using in situ IR spectroscopy. Besides, the ligand functionalization of UiO-66 significantly affected the catalytic performance of the WGS reaction. The introduction of a -Br group lowered the reactivity of Pt@UiO-66 by nearly half, whereas the substitution of -Br with a -Me2 group triply enhanced the activity. The origin of the enhanced catalytic activity was found to be the change in H2O activity in the UiO-66 pores by the ligand functionalization, which was investigated using H2O sorption, solid-state NMR, X-ray photoelectron spectroscopy, and in situ IR measurements. This work opens a new prospect to develop MOFs as a platform to activate H2O.
|
Academic Significance and Societal Importance of the Research Achievements |
本成果はこれまで未開拓であったMOFに吸着された水の反応性についての知見を与えるものであり、水を活性化する場としてのMOFの有用性を世界に先駆けて見出した点で学術的意義を有すると考えられる。本課題で解明された水の吸着状態と反応性との相関は、水をはじめとする種々の分子の反応場を構築する上で重要な指針を与えると思われる。今後、水だけでなくアンモニアや有機分子等の分子変換に、得られた知見を適用すれば革新的触媒の創出に繋がると期待される。このように本成果は小分子活性という基礎学問の発展に寄与するだけでなく、既存の触媒を凌駕する高活性触媒の開発にも貢献するため、応用面でも波及効果をもたらすと考えられる。
|
Report
(3 results)
Research Products
(14 results)
-
-
-
[Journal Article] Ultrahigh Proton Conduction via Extended Hydrogen-Bonding Network in a Preyssler-Type Polyoxometalate-Based Framework Functionalized with Lanthanide Ion2021
Author(s)
T. Iwano, K. Shitamatsu, N. Ogiwara, M. Okuno, Y. Kikukawa, S. Ikemoto, S. Shirai, S. Muratsugu, P. Waddell, R. J. Errington, M. Sadakane, S. Uchida
-
Journal Title
ACS Appl. Mater. Interfaces
Volume: 13
Issue: 16
Pages: 19138-19147
DOI
Related Report
Peer Reviewed / Open Access / Int'l Joint Research
-
-
-
-
-
-
-
-
-
-
-