Project/Area Number |
19K23717
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
0701:Biology at molecular to cellular levels, and related fields
|
Research Institution | The University of Tokyo |
Principal Investigator |
Lee Seohyun 東京大学, 情報基盤センター, 特任研究員 (00847973)
|
Project Period (FY) |
2019-08-30 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 細胞内物質輸送 / 小胞 / 細胞骨格 / 機械学習 / 小胞体 / モータータンパク質 / ディープラーニング / 細胞内輸送 / エンドソーム |
Outline of Research at the Start |
細胞内の物質輸送は抗がん剤などの薬物伝達に最も重要な物理情報を持つため、生物物理分野で広く研究されている。本研究では、細胞内での物質輸送を担当する細胞小器官の動きを機械学習を活用して分子レベルで解明することを目標とする。細胞内に蛍光粒子を入れてイメージングし、そのデータを機械学習させるとこで細胞小器官を実際に動かす分子の種類と数の情報を明らかにする研究を行う。
|
Outline of Final Research Achievements |
The movement of the intracellular vesicle, which carries important information from the extracellular area, includes essential information for developing and inspecting the mechanism of pharmaceutical delivery. However, because the movement of the vesicle occurs on a nanometer scale which hinders accurate observation and analysis, the pattern of vesicle movement has not yet been clearly understood. In this study, we aimed to elucidate the patterns of intracellular motions of vesicles based on machine learning. Using a supervised learning algorithm, we succeeded in the classification of vesicle transfer among a cytoskeletal network with the physical properties extracted from the interaction between the vesicles and cytoskeletons.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究の学術的な意義は、今までの伝統的な生物物理学の接近法では分析が難しかった細胞内物質輸送のパターンを、小胞と細胞骨格との相互作用の物理特性に着目し、機械学習アルゴリズムに基づいて解明した最初の接近法である。尚、社会的意義において、本研究で解明された細胞内の物質輸送のパターンは薬物伝達プロセスに関する研究にも繋がるため、今後新薬の開発や検証を促進させる重要な基礎研究になると期待される。
|