Project/Area Number |
19KK0134
|
Research Category |
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 31:Nuclear engineering, earth resources engineering, energy engineering, and related fields
|
Research Institution | Kyoto University |
Principal Investigator |
SEKI Shu 京都大学, 工学研究科, 教授 (30273709)
|
Co-Investigator(Kenkyū-buntansha) |
櫻井 庸明 京都工芸繊維大学, 分子化学系, 講師 (50632907)
筒井 祐介 京都大学, 工学研究科, 助教 (50845592)
崔 旭鎮 京都大学, 工学研究科, 特定助教 (70916147)
|
Project Period (FY) |
2019-10-07 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥18,070,000 (Direct Cost: ¥13,900,000、Indirect Cost: ¥4,170,000)
Fiscal Year 2022: ¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2021: ¥5,070,000 (Direct Cost: ¥3,900,000、Indirect Cost: ¥1,170,000)
Fiscal Year 2020: ¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2019: ¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
|
Keywords | ナノワイヤ / 粒子線 / イオンビーム / 伝導性 / ラマン / センシング / ナノ医療 / 直立 / センサ / 自立型 / フラーレン / ポルフィリン / 伝導度 / ナノワイヤー / SPNT / STLiP / ナノ材料 / 重合 / PDT / 線形重合 |
Outline of Research at the Start |
1: 高分子架橋によるナノ構造化: SPNT法 による高分子ナノ構造材料プラットフォームの形成 2: 低分子重合による高分子化・ナノ構造化: STLiP法による自在分子重合反応論の確立 を核として、本手法による材料群の総数を2年間で300個以上を構築する。 これをもとに、後半では各々のライブラリを自由に選んで組み合わせ1)エネルギー変換(Energy, KU-GSI-IUAC),2)分離・センシング(Separation & Sensing, KU-GSI),3)刺激応答材料と生物応用(Mechanics & Medical, KU-IUAC)それぞれへの最適化を目指す。
|
Outline of Final Research Achievements |
Present study has established successfully the Single Particle Triggered Linear Polymerization (STLiP) method which allows us to fabricate uniform 1D nanostructures via polymerization/crosslinking reactions confined into a nm-scaled cylindrical area of solid state ubiquitous organic molecules. The dimensions of the obtained nanostructures were perfectly under control in their sizes, orientation, and number density. Standing forms of the nanowires with extremely high aspect ratio exceeding ~100 on a substrate had been unexplored by the conventional nano-fabrication methods. Achieving the standing form of organic nanowires in collaborative works of KU, IUAC, GSI, and QST has been successfully implemented by 1) functional surfaces filled with extraordinary high aspect/density of the oriented nanowires, 2) nanomedicines as well as sensing platforms reflecting its gigantic surface area, and 3) Electrical current control along the 1D nanowires.
|
Academic Significance and Societal Importance of the Research Achievements |
ナノ構造形成におけるさまざまな手法が展開され,特に電子素子形成に決定的な役割を果たす中,その微細構造化はようやく2次元の束縛を離れ,3次元構造へと展開しようとしている.数nm領域の最先端材料微細化において,ボトムアップ型規則性均一ナノ構造形成の主流であるリソグラフィー技術が決して到達できなかった,アスペクト比:数10をはるかに凌駕する100以上に達する直立型ナノ構造を,本研究のSTLiP法がきわめて簡便に達成できることを示した.ごくありふれた有機分子性物質を選択し,その機能を生かしたナノ材料化が可能であることは,従前のナノ材料研究における学術的・社会的常識を覆す発見である.
|