Recognition of very low quality images using history of a large amount of spatial-temporal information
Project/Area Number |
20300065
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Perception information processing/Intelligent robotics
|
Research Institution | Nagoya University |
Principal Investigator |
HIROSHI Murase (MURASE Hiroshi) 名古屋大学, 情報科学研究科, 教授 (90362293)
|
Co-Investigator(Kenkyū-buntansha) |
IDE Ichiro 名古屋大学, 大学院・情報科学研究科, 准教授 (10332157)
DEGUCHI Daisuke 名古屋大学, 大学院・情報科学研究科, 准教授 (20437081)
MEKADA Yoshito 中京大学, 情報理工学部, 教授 (00282377)
TAKAHASHI Tomokazu 岐阜聖徳学園大学, 経済情報学部, 准教授 (90397448)
|
Project Period (FY) |
2008 – 2011
|
Project Status |
Completed (Fiscal Year 2011)
|
Budget Amount *help |
¥16,250,000 (Direct Cost: ¥12,500,000、Indirect Cost: ¥3,750,000)
Fiscal Year 2011: ¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2010: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2009: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2008: ¥5,980,000 (Direct Cost: ¥4,600,000、Indirect Cost: ¥1,380,000)
|
Keywords | パタン認識 / 画像処理 / 監視カメラ / 車載カメラ / 低品質画像 / 履歴情報 / 画像認識 |
Research Abstract |
The purpose of this research is to develop an accurate recognition algorithm for low quality images such as image sequences from in-vehicle cameras or surveillancecameras. We proposed several new algorithms using generative learning method based on generative models, or using super-resolution from multiple input images. Experimental results on real-world data demonstrated the superiority of the proposed methods in terms of recognition rate.
|
Report
(6 results)
Research Products
(52 results)