Project/Area Number |
20540164
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Basic analysis
|
Research Institution | Shizuoka University |
Principal Investigator |
SHIMIZU Senjo Shizuoka University, 理学部, 教授 (50273165)
|
Co-Investigator(Kenkyū-buntansha) |
KIKUCHI Koji 静岡大学, 工学部, 教授 (50195202)
|
Co-Investigator(Renkei-kenkyūsha) |
OGAWA Takayoshi 東北大学, 理学研究科, 教授 (20224107)
|
Project Period (FY) |
2008 – 2010
|
Project Status |
Completed (Fiscal Year 2010)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2010: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2009: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2008: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | 最大正則性 / 自由境界問題 / ナビエ-ストークス方程式 / R-有界性 / フーリエ・マルチプライヤーの定理 / Navier-Stokes方程式 / 表面張力 / Fourier-multiplierの定理 / UMD空間 / R-boundedness / 斉次Besov空間 / Hardy空間 |
Research Abstract |
We develop the method to prove maximal regularity by proving R-bounded of an solution operator in view of operator-valued Fourier-multiplier theorem. As an application of the maximal regularity, we prove local solvability of free boundary problems for the Navier-Stokes equations with surface tension in a scale invariant Sobolev space. Moreover we prove maximal regularity of the Cauchy problem for the heat equation in homogeneous Besov space that is not a UMD (unconditional martingale differences) Banach space.
|