Project/Area Number |
20592102
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Plastic surgery
|
Research Institution | Osaka City University |
Principal Investigator |
FUKUMOTO Shinya Osaka City University, 大学院・医学研究科, 講師 (90381996)
|
Co-Investigator(Kenkyū-buntansha) |
KOYAMA Hidenori 兵庫医科大学, 医学部, 准教授 (80301852)
|
Co-Investigator(Renkei-kenkyūsha) |
FURUZONO Tsutomu 近畿大学, 生物理工学部, 教授 (30332406)
OKADA Masahiro 大阪歯科大学, 歯科理工学講座, 助教 (70416220)
|
Project Period (FY) |
2008 – 2010
|
Project Status |
Completed (Fiscal Year 2010)
|
Budget Amount *help |
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2010: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2009: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2008: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
|
Keywords | 創傷治癒学 / 虚血性難治性潰瘍 / 血管新生療法 |
Research Abstract |
Clinical trials demonstrate the effectiveness of cell-based therapeutic angiogenesis against patients with a variety of ischemic disease; however, the clinical success to date has been still limited. We have reported that nano-scaled sintered hydroxyapatite (HAp)-coating on artificial grafts reveals marked cell-adhesiveness, safety and high tissue-affinity. With this nanotechnology, the inorganic, biodegradable and injectable scaffold, HAp-coated poly L-lactic acid (PLLA) microsphere, has been generated : named nano-scaffold (NS). In this study, we examined its usefulness in cell-based therapeutic angiogenesis. Bone marrow-mononuclear cells (BMC) alone, with uncoated PLLAs (LA), or with HAp-coated microspheres (nano-scaffold : NS), were intramuscularly injected into mice ischemic hind-limbs generated by femoral artery occlusion. Kaplan-Meier analysis demonstrated that NS+BMC treatment markedly prevented limb necrosis after the operation (vs. BMC alone, and LA+BMC). Roles of NS to sustain BMC in ischemic tissues were demonstrated by the findings that immunohistochemistry revealed NS and BMC co-localized, and that NS+BMC group exhibited significantly elevated intramuscular levels of proangiogenic cytokines in ischemic tissues as compared with BMC alone. We demonstrated usefulness of injectable scaffold as an enhancer for cell-based therapeutic angiogenesis.
|