Budget Amount *help |
¥3,500,000 (Direct Cost: ¥3,500,000)
Fiscal Year 2008: ¥3,500,000 (Direct Cost: ¥3,500,000)
|
Research Abstract |
極端に簡単なファンデアワールス分子においてガラス状態を実現し,その構造や性質を解明することはガラス状態,ガラス転移の本質に迫る上で非常に重要であり,多くの科学者が描く夢の一つである。本研究では,窒素等の簡単な分子を数nmの細孔内に閉じ込め,まずガラス状態を実現し,ガラス転移の熱的性質を実験的に解明することの方途を探ることを目的とした。 まずは細孔剤の合成を進めた。一般に細孔径の均一なものが作り易いシリカMCM-41を取り上げ,細孔直径1〜4nmの合成に成功したが,それ以上では難しかった。クライオスタットとして,最初に冷凍機内蔵型のものを用いて気体分子の凝縮を試みた。試料導入管を通して外部から熱が入るために,また冷凍機の振動のために,試料容器の温度としては20Kを達成するのが限界であった。窒素およびキセノンをそれぞれの液体温度領域で試料容器内に導入し,温度を下げた後に熱測定を行った。直径が2nm以上では冷却時に結晶化するのが観測された。直径が1nmの場合には結晶化と融解の挙動は見られなかったが,ガラス化の現象も見られず,液体のままにあるか,あるいは細孔壁構造に支配された固体状態にあるかは結論できなかった。より低温を安定に実現することが必要である。 現在は,液体窒素と液体ヘリウムを寒剤とするクライオスタットを利用し,試料導入管を設置することに努めている。1nmから2nmの細孔直径をもち,その細孔分布が極めて小さい細孔剤MCM-41の作り分けも重要になる。本研究から,これらの改善により,窒素やキセノンの細孔内ガラス化挙動の熱的解明が可能になることが見いだされたものと結論される。
|