• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

transversal study of machine learning and optimization

Research Project

Project/Area Number 20700251
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeSingle-year Grants
Research Field Statistical science
Research InstitutionNagoya University

Principal Investigator

KANAMORI Takafumi  名古屋大学, 情報科学研究科, 准教授 (60334546)

Project Period (FY) 2008 – 2011
Project Status Completed (Fiscal Year 2011)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2011: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2010: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2009: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2008: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords統計的学習理論 / 機械学習 / 数理工学 / 統計数学
Research Abstract

My target of this study is to provide a transversal study of machine learning and optimization theory. We apply machine learning techniques to optimization problems with noisy data. Inversely, highly developed optimization algorithms are available to conduct statistical analysis of real-world high-dimensional data. Unifying machine learning and optimization is promising for the advanced information processing.

Report

(6 results)
  • 2011 Annual Research Report   Final Research Report ( PDF )
  • 2010 Annual Research Report   Self-evaluation Report ( PDF )
  • 2009 Annual Research Report
  • 2008 Annual Research Report
  • Research Products

    (58 results)

All 2012 2011 2010 2009 2008

All Journal Article (29 results) (of which Peer Reviewed: 27 results) Presentation (23 results) Book (6 results)

  • [Journal Article] Worst-Case Violation of Sampled Convex Programs for Optimization with Uncertainty2012

    • Author(s)
      T. Kanamori, A. Takeda
    • Journal Title

      Journal of Optimization Theory and Applications

      Volume: vol.152, Issue 1 Pages: 171-197

    • Related Report
      2011 Final Research Report
    • Peer Reviewed
  • [Journal Article] F-divergence estimation and two-sample homogeneity test under semiparametric density-ratio models2012

    • Author(s)
      T. Kanamori, T. Suzuki, M. Sugiyama
    • Journal Title

      IEEE Transactions on Information Theory

      Volume: Vol.58, Issue 2 Pages: 708-720

    • Related Report
      2011 Final Research Report
    • Peer Reviewed
  • [Journal Article] Statistical analysis of kernel-based least-squares density-ratio estimation2012

    • Author(s)
      T. Kanamori, T. Suzuki, M. Sugiyama
    • Journal Title

      Machine Learning

      Volume: vol.86, Issue 3 Pages: 335-367

    • Related Report
      2011 Final Research Report
    • Peer Reviewed
  • [Journal Article] Pooling Design and Bias Correction in DNA Library Screening2012

    • Author(s)
      T.Kanamori, H.Uehara, M.Jimbo
    • Journal Title

      Journal of Statistical Theory and Practice

      Volume: 6 Pages: 220-238

    • Related Report
      2011 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Statistical analysis of kernel-based least-squares density-ratio estimation2012

    • Author(s)
      T.Kanamori, T.Suzuki, M.Sugiyama
    • Journal Title

      Machine Learning

      Volume: 86 Pages: 335-367

    • Related Report
      2011 Annual Research Report
    • Peer Reviewed
  • [Journal Article] f-divergence estimation and two-sample homogeneity test under semiparametric density-ratio models2012

    • Author(s)
      T.Kanamori, T.Suzuki, M.Sugiyama
    • Journal Title

      IEEE Transactions on Information Theory

      Volume: 58 Pages: 708-720

    • Related Report
      2011 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Worst-Case Violation of Sampled Convex Programs for Optimization with Uncertainty2012

    • Author(s)
      T.Kanamor, A.Takeda
    • Journal Title

      Journal of Optimization Theory and Applications

      Volume: 152 Pages: 171-197

    • Related Report
      2011 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Multiscale Bagging and its Applications2011

    • Author(s)
      H. Shimodaira, T. Kanamori, M. Aoki, K. Mine
    • Journal Title

      IEICE Transactions on Information and Systems

      Volume: Volume E94-D No.10 Pages: 1924-1932

    • NAID

      10030193311

    • Related Report
      2011 Final Research Report
    • Peer Reviewed
  • [Journal Article] Multiscale Bagging and its Applications2011

    • Author(s)
      H.Shimodaira, T.Kanamori, M.Aoki, K.Mine
    • Journal Title

      IEICE Transactions on Information and Systems

      Volume: E94-D Pages: 1924-1932

    • NAID

      10030193311

    • Related Report
      2011 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Least-Squares Two-Sample Test2011

    • Author(s)
      M.Sugiyama, T.Suzuki, Y.Itho, T.Kanamori, M.Kimura
    • Journal Title

      Neural Networks

      Volume: 24 Pages: 735-751

    • Related Report
      2011 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Statistical Outlier Detection Using Direct Density Ratio Estimation2011

    • Author(s)
      S.Hido, Y.Tsuboi, H.Kashima, M.Sugiyama, T.Kanamori
    • Journal Title

      Knowledge and Information Systems

      Volume: 26 Pages: 309-336

    • Related Report
      2011 Annual Research Report 2010 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Direct density-ratio estimation with dimensionality reduction via least-squares hetero-distributional subspace search2011

    • Author(s)
      Sugiyama M., Yamada M., von Bunau P., Suzuki T., Kanamori T., Kawanabe M
    • Journal Title

      Neural Networks

      Volume: 24 Pages: 183-198

    • Related Report
      2010 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Deformation of Log-Likelihood Loss Function for Multiclass Boosting2010

    • Author(s)
      T. Kanamori
    • Journal Title

      Neural Networks

      Volume: vol.23 Pages: 843-864

    • Related Report
      2011 Final Research Report
    • Peer Reviewed
  • [Journal Article] Theoretical Analysis of Density Ratio Estimation2010

    • Author(s)
      T. Kanamori, T. Suzuki, M. Sugiyama
    • Journal Title

      Communications and Computer Sciences

      Volume: vol.E93-A, no.4 Pages: 787-798

    • NAID

      10026863929

    • Related Report
      2011 Final Research Report
    • Peer Reviewed
  • [Journal Article] Deformation of Log-Likelihood Loss Function for Multiclass Boosting2010

    • Author(s)
      Takafumi Kanamori
    • Journal Title

      Neural Networks vol.23

      Pages: 843-864

    • Related Report
      2010 Self-evaluation Report
    • Peer Reviewed
  • [Journal Article] Theoretical Analysis of Density Ratio Estimation.2010

    • Author(s)
      Kanamori, T., Suzuki, T., Sugiyama
    • Journal Title

      IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences vol.E93-A, no.4

      Pages: 787-798

    • NAID

      10026863929

    • Related Report
      2010 Self-evaluation Report
  • [Journal Article] Theoretical Analysis of Density Ratio Estimation2010

    • Author(s)
      Kanamori, T., Suzuki, T., Sugiyama
    • Journal Title

      IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences

      Volume: E93-A Pages: 787-798

    • NAID

      10026863929

    • Related Report
      2010 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Deformation of Log-Likelihood Loss Function for Multiclass Boosting2010

    • Author(s)
      Kanamori, T.
    • Journal Title

      Neural Networks

      Volume: 23 Pages: 843-864

    • Related Report
      2010 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Theoretical Analysis of Density Ratio Estimation2010

    • Author(s)
      Kanamori, T., Suzuki, T., Sugiyama, M.
    • Journal Title

      IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E93-A

      Pages: 787-798

    • NAID

      10026863929

    • Related Report
      2009 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A Least-squares Approach to Direct Importance Estimation2009

    • Author(s)
      T. Kanamori, S. Hido, M. Sugiyama
    • Journal Title

      Journal of Machine Learning Research

      Volume: 10 Pages: 1391-1445

    • Related Report
      2011 Final Research Report
    • Peer Reviewed
  • [Journal Article] Nonparametric Conditional Density Estimation Using Piecewise-Linear Path Following for Kernel Quantile Regression2009

    • Author(s)
      I. Takeuchi, K. Nomura, T. Kanamori
    • Journal Title

      Neural Computation

      Volume: vol.21, num. 2 Pages: 533-559

    • Related Report
      2011 Final Research Report
    • Peer Reviewed
  • [Journal Article] A Least-squares Approach to Direct Importance Estimation.2009

    • Author(s)
      Takafumi Kanamori, Shohei Hido, Masashi Sugiyama
    • Journal Title

      Journal of Machine Learning Research. 10

      Pages: 1391-1445

    • Related Report
      2010 Self-evaluation Report
    • Peer Reviewed
  • [Journal Article] A Robust Approach Based on Conditional Value-at-Risk Measure to Statistical Learning Problems.2009

    • Author(s)
      Takeda, A., Kanamori, T.
    • Journal Title

      European Journal of Operational Research 198

      Pages: 287-296

    • Related Report
      2010 Self-evaluation Report 2009 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A Least-squares Approach to Direct Importance Estimation2009

    • Author(s)
      Takafumi Kanamori, Shohei Hido, M asashi Sugiyama
    • Journal Title

      Journal of Machine Learning Research. 10

      Pages: 1391-1445

    • Related Report
      2009 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Nonparametric Conditional Density Estimation Using Piecewise-Linear Path Following for Kernel Quantile Regression2009

    • Author(s)
      Takeuchi, Ichiro, Nomura, Kaname, Kanamori, Takafumi
    • Journal Title

      Neural Computation 21

      Pages: 533-559

    • Related Report
      2008 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Mutual information estimation reveals global associations between stimuli and biological processes2009

    • Author(s)
      Suzuki, T., Sugiyama, M., Kanamori, T., and Sese, J
    • Journal Title

      BMC Bioinformatics 10

      Pages: 52-52

    • Related Report
      2008 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Robust Boosting Algorithm against Mislabelling in Multi-Class Problems2008

    • Author(s)
      T. Takenouchi, S. Eguchi, N. Murata, T. Kanamori
    • Journal Title

      Neural Computation

      Volume: vol.20, num. 6 Pages: 1596-1630

    • Related Report
      2011 Final Research Report
    • Peer Reviewed
  • [Journal Article] Robust Boosting Algorithm against Mislabelling in Multi-Class Problems.2008

    • Author(s)
      Takenouchi, T., Eguchi, S., Murata, N., Kanamori, T.
    • Journal Title

      Neural Computation vol.20, num.6

      Pages: 1596-1630

    • Related Report
      2010 Self-evaluation Report
  • [Journal Article] Robust Boosting Algorithm against Mislabelling in Multi-Class Problems2008

    • Author(s)
      Takenouchi, Takashi., Eguchi, Sinto, Murata, Nobobu, Kanamori, Takafumi
    • Journal Title

      Neural Computation 20

      Pages: 1596-1630

    • Related Report
      2008 Annual Research Report
    • Peer Reviewed
  • [Presentation] 半教師付き学習の漸近論2012

    • Author(s)
      川喜田雅則, 金森敬文
    • Organizer
      研究集会「確率測度の最適化と通信路容量について」
    • Place of Presentation
      統計数理研究所
    • Year and Date
      2012-03-12
    • Related Report
      2011 Annual Research Report
  • [Presentation] 判別分析における損失関数と不確実性集合の共役性について2012

    • Author(s)
      金森敬文, 武田朗子, 鈴木大慈
    • Organizer
      科研費シンポジウム「生体数理・社会数理の統計科学」
    • Place of Presentation
      早稲田大学
    • Year and Date
      2012-03-01
    • Related Report
      2011 Annual Research Report
  • [Presentation] 機械学習における共役性について2012

    • Author(s)
      金森敬文, 武田朗子, 鈴木大慈
    • Organizer
      幾何統計小研究集会「データ解析における新規連携分野の調査」
    • Place of Presentation
      名古屋工業大学
    • Year and Date
      2012-02-01
    • Related Report
      2011 Annual Research Report
  • [Presentation] Relative density-ratio estimation for robust distribution comparison2011

    • Author(s)
      M. Yamada, T. Suzuki, T. Kanamori, H. Hachiya, and M. Sugiyama
    • Organizer
      Neural Information Processing Systems
    • Place of Presentation
      Granada, Spain
    • Year and Date
      2011-12-13
    • Related Report
      2011 Final Research Report
  • [Presentation] Relative density-ratio estimation for robust distribution comparison2011

    • Author(s)
      Yamada, M., Suzuki, T., Kanamori, T., Hachiya, H., Sugiyama, M
    • Organizer
      Neural Information Processing Systems (NIPS2011)
    • Place of Presentation
      Granada, Spain
    • Year and Date
      2011-12-13
    • Related Report
      2011 Annual Research Report
  • [Presentation] f-divergence estimation and two-sample homogeneity test under semiparametric density-ratio models2011

    • Author(s)
      T.Kanamori, T.Suzuki, M.Sugiyama
    • Organizer
      情報理論とその応用シンポジウム
    • Place of Presentation
      岩手
    • Year and Date
      2011-11-29
    • Related Report
      2011 Annual Research Report
  • [Presentation] ロバスト最適化による判別モデル2011

    • Author(s)
      武田朗子, 参木裕之, 金森敬文
    • Organizer
      情報論的学習理論ワークショップ
    • Place of Presentation
      奈良女子大学
    • Year and Date
      2011-11-09
    • Related Report
      2011 Annual Research Report
  • [Presentation] Multiscale Bagging with Applications to Classification and Active Learning2010

    • Author(s)
      Shimodaira H.Kanamori T., Masayoshi A., Kouta Mine
    • Organizer
      The 2nd Asian Conference on Machine Learning
    • Place of Presentation
      Tokyo
    • Year and Date
      2010-11-10
    • Related Report
      2010 Annual Research Report
  • [Presentation] Multiscale-bagging with Applications to Classification2010

    • Author(s)
      A.Masayoshi, Kanamori T., Shimodaira H
    • Organizer
      The 2nd Asian Conference on Machine Learning
    • Place of Presentation
      Tokyo
    • Year and Date
      2010-11-10
    • Related Report
      2010 Annual Research Report
  • [Presentation] A Bregman extension of quasi-Newton updates2010

    • Author(s)
      T. Kanamori and A. Ohara
    • Organizer
      Information Geometry and its Applications
    • Place of Presentation
      Germany
    • Year and Date
      2010-08-02
    • Related Report
      2011 Final Research Report
  • [Presentation] A Bregman extension of quasi-Newton updates2010

    • Author(s)
      Kanamori T., Ohara Atsumi
    • Organizer
      Information Geometry and its Applications
    • Place of Presentation
      Leipzig, Germany
    • Year and Date
      2010-08-02
    • Related Report
      2010 Annual Research Report
  • [Presentation] Direct density ratio estimation with dimensionality reduction SIAM2010

    • Author(s)
      Sugiyama, M., Hara, S., von Bunau, P., Suzuki, T., Kanamori, T.,& Kawanabe, M
    • Organizer
      International Conference on Data Mining Columbus
    • Place of Presentation
      Ohio, USA
    • Year and Date
      2010-05-29
    • Related Report
      2011 Final Research Report
  • [Presentation] Direct density ratio estimation with dimensionality reduction2010

    • Author(s)
      Sugiyama, M., Hara, S., von Bunau, P., Suzuki, T., Kanamori, T., Kawanabe, M
    • Organizer
      the 10th SIAM International Conference on Data Mining
    • Place of Presentation
      Ohio, USA
    • Year and Date
      2010-05-29
    • Related Report
      2010 Annual Research Report
  • [Presentation] Conditional density estimation via least-squares density ratio estimation2010

    • Author(s)
      Sugiyama, M., Takeuchi, I., Kanamori, T., Suzuki, T., Hachiya, H., Okanohara, D
    • Organizer
      Thirteenth International Conference on Artificial Intelligence and Statistics
    • Place of Presentation
      Sardinia, Italy
    • Year and Date
      2010-05-13
    • Related Report
      2010 Annual Research Report
  • [Presentation] A Bregman extension of quasi-Newton updates.2010

    • Author(s)
      Kanamori T., Ohara Atsumi
    • Organizer
      Information Geometry and its Applications
    • Place of Presentation
      Germany
    • Related Report
      2010 Self-evaluation Report
  • [Presentation] Kouta Mine Multiscale Bagging with Applications to Classification and Active Learning.2010

    • Author(s)
      Shimodaira H., Kanamori T., Masayoshi A.
    • Organizer
      The 2nd Asian Conference on Machine Learning
    • Place of Presentation
      Tokyo, Japan.
    • Related Report
      2010 Self-evaluation Report
  • [Presentation] Efficient direct importance estimation for covariate shift adaptation and outlier detection2009

    • Author(s)
      Kanamori, T.
    • Organizer
      The 1st Institute of Mathematical Statistics, Asia Pacific Rim Meeting
    • Place of Presentation
      Seoul
    • Year and Date
      2009-06-28
    • Related Report
      2009 Annual Research Report
  • [Presentation] Condition Number Analysis of Kernel-based Density Ratio Estimation2009

    • Author(s)
      T. Kanamori, T. Suzuki, M. Sugiyama
    • Organizer
      Numerical Mathematics in Machine Learning(NUMML2009)
    • Place of Presentation
      Montreal, Canada
    • Year and Date
      2009-06-18
    • Related Report
      2011 Final Research Report
  • [Presentation] Condition Number Analysis of Kernel-based Density Ratio Estimation.2009

    • Author(s)
      T. Kanamori, T. Suzuki, M. Sugiyama
    • Organizer
      ICML workshop on Numerical Mathematics in Machine Learning
    • Place of Presentation
      Montreal Canada
    • Related Report
      2010 Self-evaluation Report
  • [Presentation] Efficient direct importance estimation for covariate shift adaptation and outlier detection.2009

    • Author(s)
      T. Kanamori
    • Organizer
      The 1st Institute of Mathematical Statistics
    • Place of Presentation
      Asia Pacific Rim Meeting, Seoul
    • Related Report
      2010 Self-evaluation Report
  • [Presentation] Efficient Direct Density Ratio Estimation for Non-stationarity Adaptation and Outlier Detection2008

    • Author(s)
      T. Kanamori, M. Sugiyama, and S. Hido
    • Organizer
      Neural Information Processing Systems
    • Place of Presentation
      Vancouver, B. C., Canada
    • Year and Date
      2008-12-16
    • Related Report
      2011 Final Research Report
  • [Presentation] Efficient Direct Density Ratio Estimation for Non-stationarity Adaptation and Outlier Detection2008

    • Author(s)
      Takafumi Kanamori, Masashi Sugivama, and Shohei Hido
    • Organizer
      Neural Information Processing Systems
    • Place of Presentation
      カナダ・バンクーバ
    • Year and Date
      2008-12-16
    • Related Report
      2008 Annual Research Report
  • [Presentation] Shohei Hido Efficient Direct Density Ratio Estimation for Non-stationarity2008

    • Author(s)
      Takafumi Kanamori, Masashi Sugiyama
    • Organizer
      Adaptation and Outlier Detection NIPS
    • Place of Presentation
      Vancouver, Canada
    • Related Report
      2010 Self-evaluation Report
  • [Book] Density Ratio Estimation in Machine Learning2012

    • Author(s)
      M. Sugiyama, T. Suzuki, T. Kanamori
    • Publisher
      Cambridge University Press
    • Related Report
      2011 Final Research Report
  • [Book] Density Ratio Estimation in Machine Learning2012

    • Author(s)
      Masashi Sugiyama, Taiji Suzuki, Takafumi Kanamori
    • Publisher
      Cambridge University Press
    • Related Report
      2011 Annual Research Report
  • [Book] 数理工学辞典2012

    • Author(s)
      茨木俊秀, 片山徹, 藤重悟(監修)
    • Publisher
      朝倉出版
    • Related Report
      2011 Annual Research Report
  • [Book] パターン認識(Rで学ぶデータサイエンス5)2009

    • Author(s)
      金森敬文,竹之内高志,村田昇
    • Publisher
      共立出版
    • Related Report
      2011 Final Research Report
  • [Book] パターン認識(Rで学ぶデータサイエンス5)2009

    • Author(s)
      金森敬文, 竹之内高志, 村田昇
    • Total Pages
      274
    • Publisher
      共立出版
    • Related Report
      2010 Self-evaluation Report 2009 Annual Research Report
  • [Book] Chapter contribution(Geometry of Covariate Shift with Applications to Active Learning, Dataset Shift in Machine Learning)2008

    • Author(s)
      T. Kanamori, H. Shimodaira
    • Publisher
      MIT Press
    • Related Report
      2010 Self-evaluation Report

URL: 

Published: 2008-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi