Concentration phenomena in spatially inhomogeneous nonlinear reaction-diffusion systems
Project/Area Number |
20740090
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Single-year Grants |
Research Field |
Global analysis
|
Research Institution | Tokyo University of Marine Science and Technology |
Principal Investigator |
NAKASHIMA Kimie 東京海洋大学, 海洋科学技術研究科, 准教授 (10318800)
|
Project Period (FY) |
2008 – 2011
|
Project Status |
Completed (Fiscal Year 2011)
|
Budget Amount *help |
¥4,521,106 (Direct Cost: ¥3,477,774、Indirect Cost: ¥1,043,332)
Fiscal Year 2011: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2010: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2009: ¥1,271,106 (Direct Cost: ¥977,774、Indirect Cost: ¥293,332)
Fiscal Year 2008: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
|
Keywords | 非線形現象 / 反応拡散方程式系 / 特異摂動問題 / 遷移層 / 非線形反応拡散系 / スパイク / 空間非一様性 / 微分方程式 / 非線形反応拡散方程式系 / 特異極限 / 界面 / 非線型反応拡散方程式系 / モース指数 / 変分法 / 写像度 / 非線形拡散系 / Allen-Cahn方程式 / 関数方程式論 / 非線型拡散系 / シャドウシステム |
Research Abstract |
In reaction-diffusion systems, when diffusion coefficients are very small, solutions sometimes form transition layers. In this research, we consider a model in population genetics which is described by a reaction diffusion equation. We will rigorously prove, under certain conditions, that this equation has a unique nontrivial steady-state, it is linearly stable and has transition layers.
|
Report
(6 results)
Research Products
(16 results)