Project/Area Number |
20790619
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Single-year Grants |
Research Field |
Neurology
|
Research Institution | Kumamoto University |
Principal Investigator |
YAMASHITA Satoshi Kumamoto University, 大学院・生命科学研究部, 特任助教 (20457592)
|
Project Period (FY) |
2008 – 2010
|
Project Status |
Completed (Fiscal Year 2010)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2010: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2009: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2008: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | (A)神経分子病態学 / 神経科学 / 遺伝子治療 / 神経変性疾患 / 筋萎縮性側索硬化症 / 小胞体ストレス / アポトーシス / 小胞体関連分解 / アデノ随伴ウイルス |
Research Abstract |
Unfolded protein responses, including induction of stress sensor kinases, chaperones, and apoptotic mediators, are involved in the familial amyotrophic lateral sclerosis (ALS) model related to mutant Cu/Zn superoxide dismutase (SOD1) and sporadic ALS. We hypothesized that the endoplasmic reticulum-resident factor Derlin-1 plays a pivotal role in the regulation of misfolded proteins evoked by mutant SOD1. We show that Derlin-1 overexpression reduced mutant SOD1-induced cell toxicity and increased cell viability by suppressing the activation of the ER stress pathway factors : immunoglobulin-binding protein, activating transcription factor 6 p50, and C/EBP homologous protein. Interestingly, exogenous Derlin-1 resulted in a decrease in the amount of mutant SOD1, and a lesser decrease in that of wild-type SOD1, in transfected cells. Reduced SOD1 protein expression was observed in the microsomal fraction of wild-type and mutant SOD1 cells. Our results indicate that Derlin-1 regulates the turn over of SOD1 by promoting the proteasomal and autophagosomal degradation of SOD1 protein, but not by decreasing mutant SOD1 mRNA levels. Insights into the effects of Derlin-1 on mutant SOD1 may facilitate advancements in the treatment of motor neuron degeneration associated with ALS.
|