Electrochemical acceleration of ammonium biosynthesis from nitrogen gas
Project/Area Number |
20F20105
|
Research Category |
Grant-in-Aid for JSPS Fellows
|
Allocation Type | Single-year Grants |
Section | 外国 |
Review Section |
Basic Section 64050:Sound material-cycle social systems-related
|
Research Institution | National Institute for Materials Science |
Principal Investigator |
岡本 章玄 国立研究開発法人物質・材料研究機構, 国際ナノアーキテクトニクス研究拠点, グループリーダー (70710325)
|
Co-Investigator(Kenkyū-buntansha) |
LONG XIZI 国立研究開発法人物質・材料研究機構, 国際ナノアーキテクトニクス研究拠点, 外国人特別研究員
|
Project Period (FY) |
2020-11-13 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥2,300,000 (Direct Cost: ¥2,300,000)
Fiscal Year 2022: ¥600,000 (Direct Cost: ¥600,000)
Fiscal Year 2021: ¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 2020: ¥1,000,000 (Direct Cost: ¥1,000,000)
|
Keywords | Bioelectrochatalysis / Cytochrome / Circular dichroism / Nitrogen fixing / voltammetry / Multi-heme Cytochrome C / Exciton coupling / 細胞外電子移動 / 窒素固定 / 電極就職 |
Outline of Research at the Start |
窒素循環において土壌細菌によるアンモニア生成は、重要な役割を果たしています。最近、微生物に対してナノ粒子を介して電子注入をすることで窒素固定を駆動できることが報告されました。本研究では固体材料から微生物への電子移動を加速する手法を開発することで、アンモニア生成反応を効率化することを目的とします。空気中の窒素から微生物を使ってアンモニアを効率よく生み出せれば、僻地における肥料生産などに資すると期待できます。
|
Outline of Annual Research Achievements |
Bioelectrocatalysis uses living cells to realize the two-way conversion of chemical bond energy and electrical energy in organic matter. It has received extensive attention and has been initially applied to fuel cell power supply, electrochemical nitrogen/carbon fixation, and electrochemical synthesis of high-value organic matter. The key to energy conversion in living cells lies in heme, which has a transmembrane multiferroic porphyrin structure. Controlling the arrangement between heme-iron porphyrins is a promising strategy to improve electron transfer. We controlled the expression of heme MtrC in Escherichia coli and investigated the feasibility of regulating the arrangement of heme porphyrins by utilizing the mechanical interaction between heme proteins on the cell membrane. Through the circular dichroism difference spectrum developed by the research group, we proved the exciton coupling effect between heme, that is, the adjustment effect of the arrangement between porphyrin centers on the electron transfer rate. We believes that this research will have a significant impact on environmental engineering and will be of significant interest to many other fields of study ranging from biochemistry to materials science.
|
Research Progress Status |
令和4年度が最終年度であるため、記入しない。
|
Strategy for Future Research Activity |
令和4年度が最終年度であるため、記入しない。
|
Report
(3 results)
Research Products
(7 results)