Project/Area Number |
20H00239
|
Research Category |
Grant-in-Aid for Scientific Research (A)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Medium-sized Section 21:Electrical and electronic engineering and related fields
|
Research Institution | Kanazawa University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
石島 達夫 金沢大学, 電子情報通信学系, 教授 (00324450)
瀬戸 章文 金沢大学, フロンティア工学系, 教授 (40344155)
中野 裕介 金沢大学, 電子情報通信学系, 助教 (60840668)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥45,890,000 (Direct Cost: ¥35,300,000、Indirect Cost: ¥10,590,000)
Fiscal Year 2022: ¥5,590,000 (Direct Cost: ¥4,300,000、Indirect Cost: ¥1,290,000)
Fiscal Year 2021: ¥16,250,000 (Direct Cost: ¥12,500,000、Indirect Cost: ¥3,750,000)
Fiscal Year 2020: ¥24,050,000 (Direct Cost: ¥18,500,000、Indirect Cost: ¥5,550,000)
|
Keywords | 熱プラズマ / ナノ粒子生成 / 大量生成 / ナノワイヤ / ナノ粒子 / ナノ材料 / 時空間変動場 / 量産化 / 2次元分光 |
Outline of Research at the Start |
独自技術「原料間歇同期投入+変調熱プラズマ法」を発展させた「タンデム型変調熱プラズマ法」を開発し超高温変動反応場の安定維持と精緻な時空間制御とを両立させる。これにより高純度機能性ナノ材料の大量生成法を実現する:(i)熱プラズマへの電力変調度・変調波形,原料間歇投入位相,冷却ガス間歇導入により超高温・高密度ラジカル場を時空間的に制御しナノ材料への寄与を解明し,粒径制御と大量生成を達成する。(ii) 2次元分光観測・ナノ材料の気相抽出等を駆使した実験と熱プラズマ電磁熱流体数値解析から,原料蒸発とナノ材料生成過程を明確化する。
|
Outline of Final Research Achievements |
We have developed a new "tandem-type modulated thermal plasma method" by further developing the "intermittent synchronous feeding of feedstock + modulated thermal plasma method" originally developed at Kanazawa University. As a result, we achieved both stable maintenance of the high temperature modulated reaction field and precise spatio-temporal control. Using this technique, we attempted mass production of functional nanomaterials. In this study, we will spatio-temporally control the ultra-high temperature and high-density radical field by controlling the power modulation degree, the intermittent injection phase of the raw material, and the intermittent introduction of the cooling gas into the thermal plasma. As a result, we were able to clarify the raw material evaporation and nanomaterial formation processes, and were able to produce high-purity metal-doped oxide nanoparticles at 880 g/h and Si-based nanoparticles for next-generation battery anode materials at 300 g/h.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究は「タンデム型変調熱プラズマ」と,独自開発した「原料・反応ガスの同期間歇投入」を組み合わせ「機能性ナノ材料の大量生成法」を新開発したもので,本研究の独創的特色であるとともに,ナノテク分野に大きなインパクトを与える。これまで熱プラズマナノ粒子生成法は高純度ナノ粒子生成可能の特長を有するが低効率であった。しかし本研究での原料・ガス間歇投入型変調熱プラズマ法は,原料・反応ガスからのラジカル反応場と熱流場とを電磁場によりスマートに同時制御し,均一核生成・不均一凝縮過程を制御する,学術的にも新しいプロセスを提供している。本法は種々のナノ材料量産化に適用でき,社会的波及効果・意義は極めて大きい。
|