Project/Area Number |
20H00287
|
Research Category |
Grant-in-Aid for Scientific Research (A)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Medium-sized Section 25:Social systems engineering, safety engineering, disaster prevention engineering, and related fields
|
Research Institution | Yokohama National University |
Principal Investigator |
Miyake Atsumi 横浜国立大学, 大学院環境情報研究院, 教授 (60174140)
|
Co-Investigator(Kenkyū-buntansha) |
伊里 友一朗 横浜国立大学, 大学院環境情報研究院, 准教授 (90794016)
塩田 謙人 福岡大学, 工学部, 助教 (30827837)
|
Project Period (FY) |
2020-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥44,720,000 (Direct Cost: ¥34,400,000、Indirect Cost: ¥10,320,000)
Fiscal Year 2023: ¥7,930,000 (Direct Cost: ¥6,100,000、Indirect Cost: ¥1,830,000)
Fiscal Year 2022: ¥14,040,000 (Direct Cost: ¥10,800,000、Indirect Cost: ¥3,240,000)
Fiscal Year 2021: ¥14,040,000 (Direct Cost: ¥10,800,000、Indirect Cost: ¥3,240,000)
Fiscal Year 2020: ¥8,710,000 (Direct Cost: ¥6,700,000、Indirect Cost: ¥2,010,000)
|
Keywords | 高速反応学理 / エネルギー物質 / 着火燃焼機構 / 詳細反応モデリング / 爆発 / 発火 / 爆轟 |
Outline of Research at the Start |
本研究は,申請者らのグループが実施してきた凝縮相エネルギー物質の爆発燃焼現象に関する研究を深化・推進し,純理論的に高速反応現象を再現し得る詳細反応モデリング技術の構築により高速反応の学理を構築し,世界初となるイオン液体系エネルギー物質の創製に挑戦する。ここでは,量子化学計算による熱力学データの高精度推算に基づき,着火・燃焼を可能とする最適分子設計と組成探索を試み,実験的に検証する。一方,外部エネルギーの入射による反応の生起から分解,着火,燃焼に至るプロセスを詳細反応解析により再現し,燃焼の発生から影響予測に至る体系的な高速反応学理の構築と学理に基づく高度着火燃焼制御技術への展開を試みる。
|
Outline of Final Research Achievements |
In this study, the applicants have deepened and advanced their research on the explosion and combustion phenomena of condensed-phase energetic materials, and have established the theory of fast reactions by constructing detailed reaction modeling technology that can reproduce fast reaction phenomena purely theoretically without using experimental measurements, and have succeeded in creating the world's first ionic liquid-based energetic material. In addition, using a hydrazine/nitrogen tetroxide mixture as an example, they have achieved detailed reaction modeling of fast chemical reactions in the liquid phase, and in the process succeeded in constructing a statistical thermodynamic theory for quantum chemical calculations to theoretically treat condensed-phase reactions. These model calculations have deepened the theory of chemical reactions that govern the ignition phenomena of energetic materials.
|
Academic Significance and Societal Importance of the Research Achievements |
凝縮相エネルギー物質の爆発燃焼現象に関する研究を深化・推進し,実験による測定値を用いることなく純理論的に高速反応現象を再現し得る詳細反応モデリング技術の構築により高速反応の学理を構築し,世界初となるイオン液体系エネルギー物質の創製に成功するなど,大いなる学術的成果を得た。 特に,液相中における高速化学反応に関する詳細反応モデリングを達成し,その過程で凝縮相反応を理論的に取り扱うための量子化学計算に関する統計熱力学理論を構築することに成功し,モデル計算によりエネルギー物質の着火現象を支配する化学反応に関する学理を深化させることができたことは,広く燃焼爆発分野の発展に大きく貢献するものである。
|