Project/Area Number |
20H01793
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 11010:Algebra-related
|
Research Institution | The University of Tokyo |
Principal Investigator |
Tsuji Takeshi 東京大学, 大学院数理科学研究科, 教授 (40252530)
|
Project Period (FY) |
2020-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥7,670,000 (Direct Cost: ¥5,900,000、Indirect Cost: ¥1,770,000)
Fiscal Year 2023: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2022: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2021: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2020: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | p進Hodge理論 / p進Simpson対応 / prismaticコホモロジー / q接続 / 整p進Hodge理論 / q-Higgs加群 / prismatic cohomology / (φ,Γ)加群 / qHiggs加群 / Lubin Tate岩澤理論 / (φ,Γ)加群 / Lubin-Tate岩澤理論 / p進ガロア表現 / クリスタル |
Outline of Research at the Start |
B. Bhatt, M. Morrow, P. Scholzeによる新しい整p進Hodge理論の定式化(Ainfコホモロジー)の係数理論を,プロエタール局所自由Ainf層を用いてMorrowと共同で構築した.本研究では,このAinf係数理論と既存の理論との関係を明らかにするとともに,Ainf係数理論の導来版やBhatt-Scholzeのプリズム理論との関係についても研究する. またp進Simpson対応において残されている整p進Simpson対応とコホモロジーの両立性,幾何的基本群の通常の表現に伴うHiggs束のChern類の消滅や,多変数Lubin-Tate (φ,Γ)理論の研究も行う.
|
Outline of Final Research Achievements |
We studied p-adic Simpson correspondence, integral p-adic Hodge theory, prismatic cohomology via q-Higgs fields, and multivariable local Iwaswa theory for Lubin-Tate extensions. We obtained a global comparison of cohomologies in integral p-adic Simpson correspondence, a functoriality in p-adic Simpson correspondence, a comparison between Ainf cohomology and prismatic cohomology with coefficients, a description of a prismatic crystal and its cohomology in terms of q-Higgs modules, and a new construction of the description of the Lubin-Tate Iwasawa module of a p-adic representation in terms of the Lubin-Tate (phi,Gamma)-module, via Lubin-Tate generalized Coleman power series.
|
Academic Significance and Societal Importance of the Research Achievements |
数体上の代数多様体のエタールコホモロジーとして得られるガロア表現は,数論幾何学の研究における基本的な道具の一つとなっている.p進Hodge理論は,微分形式や微分方程式を用いて,ガロア表現から数論的情報を取り出す有効な手段となっている.本研究では,応用上重要な整コホモロジーの係数理論の基礎(具体的記述やコホモロジーの比較)や,非アーベルp進Hodge理論(p進Simpson対応)の代数多様体の間の写像に関するふるまいなどについての成果を得た.
|