Project/Area Number |
20H02030
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 18010:Mechanics of materials and materials-related
|
Research Institution | Osaka University |
Principal Investigator |
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥16,640,000 (Direct Cost: ¥12,800,000、Indirect Cost: ¥3,840,000)
Fiscal Year 2022: ¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2021: ¥5,200,000 (Direct Cost: ¥4,000,000、Indirect Cost: ¥1,200,000)
Fiscal Year 2020: ¥7,930,000 (Direct Cost: ¥6,100,000、Indirect Cost: ¥1,830,000)
|
Keywords | 変形体力学 / 計算力学 / 不安定性理論 / マルチスケール理論 / メタマテリアル |
Outline of Research at the Start |
微細な内部構造を有する材料システムの中で、予応力場と微視回転型不安定機構を内在する力学的メタマテリアルのミクロ現象とマクロ特性の関係を記述する粗視化計算力学解析法の定式化とその実証を行うことを目的とします。特に、付加製造技術による造形プロセスを念頭に、その機構設計だけでなく、造形中に力学環境を変化させることによって応力場を織り込んだ予応力設計法を新たに発明し、力学的不均一性と幾何学的なミクロ運動の束縛の両面から研究を行い、メタマテリアル創製のための計算機援用工学技術の礎を築きます。特性や機能を発現する微細構造を設計する手法にブレークスルーをもたらすことを目指してメカニズムを探究します。
|
Outline of Final Research Achievements |
We focused on unique deformations of materials with instability mechanisms of microstructures and prestress fields, as nonlinear mechanical phenomena. Coarse-grained theory for computational mechanics was established and validated through simulations. Specifically, the study includes (1) Relationship between instability mechanisms of microstructures and macroscopic properties, (2) Deformation theory of growing solids was formulated, and the process of formation of prestress fields due to additive manufacturing, (3) Driving forces resulting from the interaction between liquids and solids that induce out-of-plane rotation instability were evaluated. (4) Coarse-grained computational solid mechanics model for mechanical metamaterials. Through the research activities, insights relevant to the design of metamaterials were obtained, and fundamental methodologies for computer-aided engineering that that utilizes instability phenomena in macroscopic functions were successfully established.
|
Academic Significance and Societal Importance of the Research Achievements |
ミクロ構造の形態や要素の特性に関連して生じる強い非線形性を伴って現れる不安定化現象は、直ちにマクロな機能の喪失につながるのではなく、むしろ、新しい機能の発現に結びつくことを見出し、階層性を有する構造体の知的な潜在的能力としての不安定性の積極的意義の重要性を示した。硬さと丈夫さを兼ね備えた真珠層の力学特性の理解から、皮ふのしわの形成メカニズムまでに至る成果から、不安定性が自然界や人工物の様々なスケールの多様な構造に見られる普遍的な性質であることを明らかにした。得られた知見には、理工学のみならず、生命科学へのインパクトや学術的意義、さらには広い学術的分野の裾野をカバーする社会的意義が見い出せる。
|