Construction of a new design basis toward the manufacturing of high toughness electrode in solid oxide fuel cells
Project/Area Number |
20H02033
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 18010:Mechanics of materials and materials-related
|
Research Institution | Chiba Institute of Technology |
Principal Investigator |
Hara Shotaro 千葉工業大学, 工学部, 准教授 (10401134)
|
Co-Investigator(Kenkyū-buntansha) |
鹿園 直毅 東京大学, 生産技術研究所, 教授 (30345087)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥18,070,000 (Direct Cost: ¥13,900,000、Indirect Cost: ¥4,170,000)
Fiscal Year 2022: ¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥9,490,000 (Direct Cost: ¥7,300,000、Indirect Cost: ¥2,190,000)
|
Keywords | 固体酸化物形燃料電池 / FIB-SEM / 微細構造 / 焼結 / 破壊 / シミュレーション / 破壊特性 / 多孔体 / プロセスシミュレーション / 機械材料・材料力学 / 燃料電池 / 多孔質 / ペリダイナミクス |
Outline of Research at the Start |
固体酸化物形燃料電池(SOFC)は,発電効率が高く,市場への浸透が本命視される一方,セラミックス積層体で構成されるため,その脆性的な破壊を防止することが重要課題となっている.本研究では,電極の室温破壊特性を予測できる,新しいシミュレーション技術の確立を目指す.具体的には,SOFC電極を対象とし,① 最新の破壊理論を用いたセラミックス積層体の破壊シミュレーション法の開発,② 収束イオンビーム-走査型電子顕微鏡を用いた積層体内部のき裂進展経路の可視化,③ 室温破壊靭性実験による計算モデルの妥当性検証,を実施する.本研究を通して,高い発電性能と高い靭性とを両立できる電極構造の提示に取り組む.
|
Outline of Final Research Achievements |
In this study, a novel numerical technique, capable of predicting the damage evolution in porous materials at meso-scale, has been well developed. Using this technique, the porosity dependence on fracture properties for cathode materials has been simulated. In addition, the micro-indentation experiments were conducted to obtain the porosity dependence of fracture toughness. Furthermore, using a focused ion beam-scanning electron microscope system, the crack propagation mechanism in a porous electrode were clarified. Finally, a basis of deep learning model using convolutional neural networks that can predict the relationship between mechanical properties and microstructure of porous electrode has been developed.
|
Academic Significance and Societal Importance of the Research Achievements |
固体酸化物形燃料電池電極の信頼性と耐久性を向上するためには、多孔質電極の脆性的な破壊特性の理解が必要不可欠である。本研究では、集束イオンビームー走査型電子顕微鏡を用いて,微小押し込み試験中に多孔体電極内部に発生するき裂進展の様子とそのメカニズムを初めて明らかにした。さらに,多孔体電極の脆性的にき裂が進展する様子を予測できるシミュレーション技術を構築した。得られた技術を発展させることによって、高靭性かつ安全な燃料電池製造が実現可能となる.
|
Report
(4 results)
Research Products
(15 results)