質量標準トレーサビリティ体系のための超高精度・広範囲なシリコン球体計測
Project/Area Number |
20H02040
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 18020:Manufacturing and production engineering-related
|
Research Institution | The University of Tokyo |
Principal Investigator |
道畑 正岐 東京大学, 大学院工学系研究科(工学部), 准教授 (70588855)
|
Co-Investigator(Kenkyū-buntansha) |
高橋 哲 東京大学, 先端科学技術研究センター, 教授 (30283724)
門屋 祥太郎 東京大学, 先端科学技術研究センター, 助教 (60880234)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Granted (Fiscal Year 2022)
|
Budget Amount *help |
¥17,810,000 (Direct Cost: ¥13,700,000、Indirect Cost: ¥4,110,000)
Fiscal Year 2022: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2021: ¥7,410,000 (Direct Cost: ¥5,700,000、Indirect Cost: ¥1,710,000)
Fiscal Year 2020: ¥8,320,000 (Direct Cost: ¥6,400,000、Indirect Cost: ¥1,920,000)
|
Keywords | Whispering gallery mode / 光共振 / ビート周波数 / WGM共振 / 球体 / 屈折率 / 自律校正 / Goos-Haenchenシフト / 偏光 / 近接場 / SNOM / 有限要素解析 / 近接場プローブ / 定在波 / テーパ光ファイバ |
Outline of Research at the Start |
質量の基準となる高精度な計測原理を構築するため、直径94 mmから94 μmのシリコン球の計測が求められている。本研究では、球の中を周回共振する光の伝搬形態であるWGMという光学現象を用いて計測する原理を提案している。球の円周長を測定し、そこからシリコン球の直径を計測する。円周長は共振する光波長の倍数で正確に求められる。この倍数を正確に求めること、球の屈折率を測定することで、超高精度なシリコン球の計測原理確立を目指す。
|
Outline of Annual Research Achievements |
本研究の最終目的は、直径94 mmから94 μmのシリコン単結晶球体の直径を10のマイナス6乗の不確かさで計測する技術の確立であり、その実現のため、本年度は球体屈折率の自律的補正法による屈折率測定手法の確立を目指し研究を行なった。 屈折率について、波長分散と屈折率絶対値に分けて考え、その補正についての検討を行った。波長分散はWGMによって共振する光周波数の間隔が一定になることを利用し、その間隔のばらつきがすなわち屈折率の分散によるものであると仮定した上で、補正をおこの合う方法を提案した。また、絶対値については、離れた2つの角度モード番号(すなわち異なる波長)での屈折率の差を利用することで、保定する手法を提案した。 結果として、波長分散は10の-6乗程度のオーダまで補正が可能であることが示唆された。また、屈折率の絶対値については、共振波長の測定精度が0.01 pm程度まで保証できるのであれば、直径数nmレベルの正確さで補正できることがわかった。
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
球の屈折率補正方法について提案し、性能について、解析的にまた実験的に補正が可能であることが明らかであった。一方で、今後更なる高精度化を図るためには、共振波長をより高い精度で測定する必要があることも示され、今後の計測システム開発に向けて大きな指針を得ることができた。
|
Strategy for Future Research Activity |
これまでは概ね200 μm程度の球体に対して、モード推定の正確さ評価や屈折率補正法についての検討を行うなど、計測の正確さに対するアプローチを行ってきた。今後は、この手法をさまざまなサイズの球体への対応を行うため、定在波型のWGMやビート信号を用いた新しい計測手法について、新たに手法を提案し、その手法の原理検証を行なっていく。
|
Report
(2 results)
Research Products
(14 results)