• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Investigation of thermal capacitors based on electronic phase transition materials and development of highly efficient thermoelectric power generation system

Research Project

Project/Area Number 20H02137
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 21010:Power engineering-related
Research InstitutionKanagawa Institute of Industrial Sclence and Technology (2023)
Tokyo University of Science (2020-2022)

Principal Investigator

Shiojiri Daishi  地方独立行政法人神奈川県立産業技術総合研究所, 電子技術部, 研究員(任期有) (30784235)

Co-Investigator(Kenkyū-buntansha) 飯田 努  東京理科大学, 先進工学部マテリアル創成工学科, 教授 (20297625)
Project Period (FY) 2020-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥18,460,000 (Direct Cost: ¥14,200,000、Indirect Cost: ¥4,260,000)
Fiscal Year 2022: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2021: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2020: ¥15,080,000 (Direct Cost: ¥11,600,000、Indirect Cost: ¥3,480,000)
Keywords熱電変換技術 / 蓄熱材料 / 電子・構造相転移 / 電子物性 / 熱物性 / 酸化物 / 相転移 / 熱電変換 / 熱制御
Outline of Research at the Start

酸化物は超電導・発光・磁性体などの複数分野で技術革新を成した材料機能の宝庫だが、それらの電子物性や微視的材料組織と熱物性との相関は報告例の少ない未開拓領域である。本助成研究では、材料構造・電子相転移に伴う急速蓄放熱と高蓄熱密度とを併せ持つ熱機能材料の創製と電子-熱物性解析環境の構築に資する基礎研究を遂行する。また、本熱機能材料を応用した熱電システムを構築することにより、熱サイクル条件下における発電効率への寄与について定量的に評価する。本研究は、酸化物エレクトロニクスと熱制御分野間との融合領域の探索を行い、熱利用技術の高度化を推進する取り組みである。

Outline of Final Research Achievements

This study presents findings on recycling large amounts of unused heat below 300°C and enhancing heat utilization technology. A solid phase transition latent heat storage material was introduced to regulate temperatures on the heat source side for enhancing the power generation performance and prolonging the service life of a thermoelectric generation module. Through open circuit voltage evaluation via thermal cycling tests, a temperature stabilization effect was observed on the high-temperature side of the thermoelectric module, particularly near the phase transition point of the metal-insulator transition. To comprehensively investigate the thermal functionality stemming from the electronic characteristics of the material, a thermophysical property evaluation and analysis system was devised. This system facilitated the exploration of the relationship among electric field application, electrical assessment, and thermal functionality.

Academic Significance and Societal Importance of the Research Achievements

持続可能な社会の実現に向けて、エネルギー構造改革が急務とされている。電気の最大の副産物でもある未利用熱エネルギーの資源化と制御技術の高度化が求められている。本助成研究では、熱電モジュールにおける熱源側の調温機構として一定温度での急速蓄放熱と高蓄熱密度とを両立した金属酸化物材料を熱電システムへ応用し、発電特性への寄与について熱サイクル試験から明らかにした。その結果、従来に比べて小型・高効率・長寿命な熱電発電技術を確立し、材料の電子・熱的物性の同時評価システムと理論計算手法による解析環境も構築した。

Report

(1 results)
  • 2023 Final Research Report ( PDF )

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi