Project/Area Number |
20H02163
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 21030:Measurement engineering-related
|
Research Institution | Shizuoka University |
Principal Investigator |
Ota Satoshi 静岡大学, 工学部, 准教授 (30774749)
|
Co-Investigator(Kenkyū-buntansha) |
倉科 佑太 東京農工大学, 工学(系)研究科(研究院), 准教授 (40801535)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥18,070,000 (Direct Cost: ¥13,900,000、Indirect Cost: ¥4,170,000)
Fiscal Year 2022: ¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2020: ¥9,230,000 (Direct Cost: ¥7,100,000、Indirect Cost: ¥2,130,000)
|
Keywords | 磁性ナノ粒子 / 磁気緩和 / 磁気粒子イメージング / がん温熱治療 / 高調波 / 磁化率 / 緩和時間 / 磁化曲線 / 磁化応答 |
Outline of Research at the Start |
磁性ナノ粒子とは、外部磁場への応答を示すベクトル量(磁化)の磁場に対する応答により磁気信号と発熱を生じるため、磁気粒子イメージングと低侵襲ながん温熱治療を併用した、次世代がん診断治療の実用化が期待されている。複数コア粒子が集合したマルチコア構造は、シングルコア構造に対して高い磁気信号と発熱を得られ、診断治療に有効である。 本研究では、マルチコア構造の内部コア粒子の挙動に注目し、集合体とコア粒子の応答を分けて観測可能な、磁化応答の直接計測システムによる実測と磁化シミュレーションから磁化応答モデルを構築し、生体内模擬計測を組み合わせて、がん診断治療への粒子設計最適化におけるブレイクスルーを目指す。
|
Outline of Final Research Achievements |
With respect to magnetic nanoparticles of the nanoflower structure similar to the multicore structure, the magnetization dynamics in the single core particles included in the multicore structure was divided from the effective dynamics in the multicore structure. By the pulsed magnetic field whose switching time was approximately 10 ns, the magnetization relaxation for 5 ms was observed. The magnetization in the nanoflower particles was compared to the single core particles whose diameter was similar to the effective diameter in the nanoflower particles. The measured Neel relaxation time indicates that the effective anisotropy constant in the nanoflower particles was significantly different from that in the single core particles. The measurement system for magnetic nanoparticles internalized into living adherent cells was constructed. It is indicated that the magnetization was reduced by inhibiting particle physical rotation and the dipole interaction due to aggregation in cells.
|
Academic Significance and Societal Importance of the Research Achievements |
腫瘍に集積させた磁性ナノ粒子を可視化する磁気粒子イメージングやがん温熱治療が注目されている。粒子が単体で応答するシングルコア構造に対して、複数のコア粒子が集合して実効的に単一粒子として機能するマルチコア構造が、診断治療に有効であるが、その磁化応答が未解明なため、診断治療の実用化に十分な磁気信号と発熱量が得られていない。 粒径などの粒子パラメータと磁化応答の相関性を体系化し、マルチコア構造のコア粒子間相互作用を考慮した磁化応答モデル構築することは学術的に意義深い。さらに生細胞環境での計測により、生体環境での粒子の形態変化を考慮した、がん診断治療への最適な粒子設計指針を得ることは社会的意義が大きい。
|