Project/Area Number |
20H02167
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 21040:Control and system engineering-related
|
Research Institution | Chiba University |
Principal Investigator |
Zanma Tadanao 千葉大学, 大学院工学研究院, 准教授 (20324543)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥11,960,000 (Direct Cost: ¥9,200,000、Indirect Cost: ¥2,760,000)
Fiscal Year 2022: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥9,100,000 (Direct Cost: ¥7,000,000、Indirect Cost: ¥2,100,000)
|
Keywords | サイバーフィジカルシステム / ネットワーク化制御系 / ネットワーク化制御 / ネットワーク制御 / 最適制御 / 機械学習 |
Outline of Research at the Start |
我が国では現在,情報・人間・機械が結合するネットワークを通じて多くの人々が豊かな社会を享受できる超スマート社会の技術的基盤の整備が進められている. 本研究で対象とする「情報・人間・機械が混在するネットワーク化制御系」の解析・設計は超スマート社会の中核を担う重要な学術的基盤技術である. 本研究では,これまでのネットワーク化制御系における最適化手法を基盤に,機械学習に代表される最新の手法によって不確定要因の推定と補償を融合し,情報・人間・機械が結合する超スマート社会の基盤技術を担うネットワーク化制御系の理論を体系化する.また,その手法の有効性を複数マシンの分散協調制御の実験によって明らかにする.
|
Outline of Final Research Achievements |
In 2020, we proposed a method using reinforcement learning for data quantization, data missing, and data transmission scheduling in networked control systems, and confirmed its effectiveness in experiments. 2021, in addition to scheduling using reinforcement learning, we proposed a method based on matrix inequalities using sparse matrices, and showed its effectiveness in simulations. In 2022, we proposed a method of missing estimation and delay guarantee in real-time using machine learning and reinforcement learning, and confirmed its effectiveness in experiments. and optimal control in real-time.
|
Academic Significance and Societal Importance of the Research Achievements |
得られた研究成果は,ネットワーク化制御系における強化学習や機械学習の応用による新たな展開を示す.特に,データ伝送スケジューリングや移動体の追跡制御に関する提案は,実験によってその有効性が明らかにされる.これにより,ネットワークシステムにおいてリアルタイムでの学習と制御を統合することが可能となり,データ伝送の効率や移動体の追跡精度の向上が期待される.さらに,異なる時定数の制御対象においても効果的なスケジューリングが可能であることが示される.このように,これらの研究成果はネットワーク制御技術の発展に貢献し,実時間での最適化や制御の実現に向けた新たな可能性を示唆する.
|