Design of sp-bonds in functional BN films by arc discharge with independent parameter control
Project/Area Number |
20H02481
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 26050:Material processing and microstructure control-related
|
Research Institution | Kyoto University |
Principal Investigator |
Eriguchi Koji 京都大学, 工学研究科, 教授 (70419448)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥18,070,000 (Direct Cost: ¥13,900,000、Indirect Cost: ¥4,170,000)
Fiscal Year 2022: ¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2021: ¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2020: ¥9,230,000 (Direct Cost: ¥7,100,000、Indirect Cost: ¥2,130,000)
|
Keywords | 窒化ホウ素 / プラズマ / 結合状態 / 光学特性 / 電気特性 / 高密度プラズマ / トンネルリーク電流 / イオンエネルギー / フラックス / エネルギー / 誘電率 |
Outline of Research at the Start |
窒化ホウ素膜(BN)は炭素に比べ化学安定で,多様な次元(2D,3D)構造を取りうる元素系であり,様々な極限環境や電子デバイスへの応用が期待されている重要な学術的かつ工学的対象である.本研究では,実用に耐えうるBN膜の2D,3D構造制御技術の確立を目指す.具体的には,これまで開発してきた反応性プラズマ(RePAC)をプラットフォームにし,安定したBN膜2D,3D構造制御技術の実現を目指す.イオンエネルギー・フラックス分離制御型アーク放電プラズマ源(2G-RePAC)を新規に設計し,局所的なsp2-sp3結合が最適化された高品質BN成膜技術の構築を目指す.
|
Outline of Final Research Achievements |
This study focuses on designing functional BN films with various sp2-sp3 bonding network using reactive plasma-assisted coating (RePAC) method where process parameters (e.g. the energy and flux of incident ions) are independently controlled. Stable BN/Si structures were fabricated with anti-delamination feature. It was found that the extinction coefficient and tunneling leakage current strongly depends on the sp2-sp3 bonding phase. Time evolution of leakage current under constant voltage stress indicated characteristic electron trapping in the BN films. These findings imply that the RePAC system is one of the promising methods which realize functional BN films.
|
Academic Significance and Societal Importance of the Research Achievements |
様々な機能材料の高信頼性化には,材料中の原子間結合の制御が重要な工学的課題である.窒化ホウ素(BN)膜は,2Dから3D構造を取りうる特異な材料であるが,未だ幅広い工学的応用には至っていない.本研究では,高密度プラズマ源のプロセスパラメータの独立制御により,様々なsp2-sp3結合相比を有するBN膜形成を実現し,ナノネットワーク構造と光学特性(消衰係数)やトンネルリーク電流との相関解明を進めた.その結果,従来の機械特性に加え,sp2-sp3結合相比に応じて光学特性やトンネルリーク電流が制御できることが明らかになった.この事実は,将来の機能性BN膜実現に寄与する重要な知見である.
|
Report
(4 results)
Research Products
(13 results)