Project/Area Number |
20H02487
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 26050:Material processing and microstructure control-related
|
Research Institution | Konan University |
Principal Investigator |
Akamatsu Kensuke 甲南大学, フロンティアサイエンス学部, 教授 (60322202)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥17,940,000 (Direct Cost: ¥13,800,000、Indirect Cost: ¥4,140,000)
Fiscal Year 2022: ¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2021: ¥5,720,000 (Direct Cost: ¥4,400,000、Indirect Cost: ¥1,320,000)
Fiscal Year 2020: ¥8,580,000 (Direct Cost: ¥6,600,000、Indirect Cost: ¥1,980,000)
|
Keywords | 電気めっき / 低環境負荷 / 高分子電解質 / 廃液フリー / 固体電解質膜 / 銅めっき / 高分子電解質膜 / 固相電析法 / イオン輸送 / ダイレクトめっき |
Outline of Research at the Start |
環境負荷インパクトの小さい高速電気めっき技術の開発は、回路基板製造における危急的課題である。本研究では、めっきプロセスにおけるイオン輸送相に固(電解質膜)-液(電解液)界面を導入し、「界面濃縮」を新たにイオン輸送駆動力とすることにより、廃液を出さず、低濃度電解質溶液からの高速めっきを可能にする新しい電析システムを提案する。これにより、次世代の「新規低環境負荷めっきプロセス」の実現に向けた化学的アプローチを提案するとともに、小ロット・多品種少量生産型の実装基板への応用可能性を開拓する。
|
Outline of Final Research Achievements |
In this study, solid (electrolyte film)-liquid (electrolyte) interface was introduced as the ion transport phase in the electroplating process, and "interfacial concentration effect" was newly added as the driving force for ion transport process. The ion-transport kinetics was experimentally and theoretically studied based on interfacial structural model. As a result, we found that ion penetration between the electrolyte film and the solution is the rate-determining step in this reaction and the rate constant for each reaction was successfully calculated. As a site-selective deposition tool, the developed method can be used to fabricate microelectronic and even semiconductor circuit elements in a manner that resembles stamping deposition, and is suitable for small-lot, on-demand, and multi-product microfabrication.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究により、固液界面における化学反応速度を支配する新たな物質移動制御機構が解明されたことから、電極間のイオン輸送に関する概念的発展が期待されるとともに、電気化学および物理化学等における基礎学問分野に対して新たな学理を提供できる。また本系は、支持電解質や添加剤を使用せず廃液をほとんど出さないため、回路基板製造におけるエネルギー投入を飛躍的に低減できる。本法は従来法に比べて、回路基板単位面積あたりの二酸化炭素排出量を1/3に、廃液量を1/30以下にすることが可能であり、近年の小ロット・多品種少量生産の要求に対応する革新的ブレイクスルーをもたらすと期待できる。
|