Project/Area Number |
20H02495
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 26060:Metals production and resources production-related
|
Research Institution | Kyoto University |
Principal Investigator |
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥17,940,000 (Direct Cost: ¥13,800,000、Indirect Cost: ¥4,140,000)
Fiscal Year 2022: ¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2021: ¥4,940,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥1,140,000)
Fiscal Year 2020: ¥8,450,000 (Direct Cost: ¥6,500,000、Indirect Cost: ¥1,950,000)
|
Keywords | 化学ポテンシャル制御 / 反応場 / 二次元材料 / 固溶体 / ドーピング / pn反転 / 硫化錫 / 化学ポテンシャル / 製膜 / 蒸留 / スピンコーティング / ホモpn接合 / バルク結晶成長 / フラックス / 格子欠陥 |
Outline of Research at the Start |
本研究では通常フラックスと呼ばれる液相を半導体形成の“反応場”として捉えることによる新たなプロセス・概念に基づき,Sn-Sb 液相とSnS 固相との二相平衡を利用した Sb ドーピングによる SnS の n 型伝導化,およびAl, もしくは Ga を加えた Ge-Sn-Al(Ga) 液相と (Ge,Sn)S との平衡を利用した固溶体 (Ge,Sn)S の形成によるバンドギャップ制御を試みる。いずれも,固相と平衡する液相(反応場)における化学ポテンシャル制御が鍵となる。
|
Outline of Final Research Achievements |
In this study, we demonstrated to obtain the n-type conduction of SnS and to control the bandgap using (Ge,Sn)S solid solution by controlling the chemical potential in liquid phase containing Sn in equilibrium with SnS. In the former case, the change of conduction type from p to n was observed at the Sb composition of 0.02 mol% in the SnS crystal. As we planned in this study, n-type conduction was confirmed for the first time in cation doping of SnS by realizing a chemical potential environment different from the conventional one. On the other hand, the addition of Bi as a fourth element to the system results the equilibrium of (Ge,Sn)S solid solution with liquid phase. The solid solution crystals with a controlled band gap were obtained by evaporation based on the equilibrium.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では従来困難であった,カチオンドープによるSnSのn型伝導化に初めて成功した。これにより,太陽電池におけるホモpn接合の実現などに対して重要な知見を与える。また,固溶体形成に関しては,プロセスの低温化という制約に対して,液相との平衡と分留を組み合わせることで解決策を提示した。いずれも,目的の結晶と熱力学的平衡にある液相の化学ポテンシャルを制御するという考え方に基づくものである。このような冶金的な考え方を半導体プロセスに適用することで,新奇の材料,およびプロセス開発に繋がることが期待できる。
|