Project/Area Number |
20H02515
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 27020:Chemical reaction and process system engineering-related
|
Research Institution | Nagoya Industrial Science Research Institute (2020, 2022) Nagoya University (2021) |
Principal Investigator |
Goto Motonobu 公益財団法人名古屋産業科学研究所, 研究部, 上席研究員 (80170471)
|
Co-Investigator(Kenkyū-buntansha) |
本田 真己 名城大学, 理工学部, 准教授 (60824191)
高見 誠一 名古屋大学, 工学研究科, 教授 (40311550)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥18,070,000 (Direct Cost: ¥13,900,000、Indirect Cost: ¥4,170,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2021: ¥7,930,000 (Direct Cost: ¥6,100,000、Indirect Cost: ¥1,830,000)
Fiscal Year 2020: ¥9,100,000 (Direct Cost: ¥7,000,000、Indirect Cost: ¥2,100,000)
|
Keywords | プラズマ / 気液界面放電 / 化学反応 / ナノ粒子 / 流通反応器 / 高圧力 / 流通反応 / 材料調製 |
Outline of Research at the Start |
大気圧から超臨界領域を含めた高圧気体と液体との気液界面での放電プラズマが化学反応や材料調製法として優れていることがわかってきた。圧力の影響が顕著であることや流通系でのプロセスの可能性を確認した。そこで、流体と液体界面での放電によるプラズマを利用した化学反応ならびに材料調製手法を構築し、現象を解明することで学理を追及することと、気液界面でのプラズマを効率的利用できる流通系プロセスの開発を目的とする。特に、高圧力下での操作が可能な流通式プラズマ反応プロセスを構築する。反応システムのユニット化も検討する。プラズマ計測を含めた反応実験と理論の両面から新規で効率的なプロセスを開発する。
|
Outline of Final Research Achievements |
We have developed a method for chemical reactions and material preparation using plasma discharges at the fluid/liquid interface under atmospheric pressure to high pressure, and constructed a flow process that can efficiently utilize plasma at the gas-liquid interface. Using liquid surface discharge plasma in a batch reactor, various chemical reactions and nano-material preparation were carried out, and plasma measurements were performed under high pressure, and radicals and reactive species were measured in the gas and liquid phases. The nanoparticles produced were characterized. A tube-type reactor was fabricated for the distribution process. Slug flow was used as the gas-liquid flow system. Dye decomposition reactions and metal nanoparticle formation were performed, and the effect of pressure was investigated. The relationship between the amount of energy given and the reaction was discussed in relation to the pressure dependence.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究により大気圧から高圧下での気液界面放電プラズマを利用した反応システムを構築した。本システムにより、有害物の分解などの化学反応や金属ナノ粒子などのナノ構造体の調整が可能となった。 世界で初めて高圧下で気液界面放電を利用する連続反応プロセスを実現できた。本研究の成果はプラズマ科学の発展に寄与するのみならず、本システムは従来法に比べて環境低負荷の反応システムであり、広範囲の応用に適用できる。
|