Development of core-shell nanocatalysts for the innovative molecular transformations based on their properties
Project/Area Number |
20H02523
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 27030:Catalyst and resource chemical process-related
|
Research Institution | Osaka University |
Principal Investigator |
MItsudome Takato 大阪大学, 大学院基礎工学研究科, 准教授 (00437360)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥17,940,000 (Direct Cost: ¥13,800,000、Indirect Cost: ¥4,140,000)
Fiscal Year 2022: ¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2020: ¥8,970,000 (Direct Cost: ¥6,900,000、Indirect Cost: ¥2,070,000)
|
Keywords | 触媒 / ナノ粒子 / グリーンケミストリ― / 金属ナノ粒子 / 水素化反応 / 合金 |
Outline of Research at the Start |
金属と金属酸化物の界面で発現する協奏的触媒機能により、エステルからエーテルまたはアミドからアミンへの選択的還元反応を高効率に進行させる触媒の開発を行う。また、見出した界面協奏触媒機能を最大化する方法論として、金属ナノ粒子を金属酸化物で覆ったコア-シェル型金属ナノ粒子触媒の開発を行う。具体的な達成目標値は、非対称エステルを選択的に還元し、選択率99%以上、収率90%以上で対応する非対称エーテルへと変換する金属ナノ粒子触媒を開発する。
|
Outline of Final Research Achievements |
We have developed non-precious metal phosphide nanoparticle catalysts. In contrast to the conventional single non-precious metal nanoparticles that are pyrophoric or require pretreatment with hydrogen at high temperatures, the metal phosphide nanoparticle are found to be air-stable and exhibit high catalytic performance in various hydrogenation reactions. Furthermore, the developed metal phosphide nanoparticle catalysts were found to be reusable, demonstrating practical utility. These results show that metal phosphide nanoparticles are a promising group of catalysts which outperform conventional catalysts in a wide range of molecular transformations in the liquid phase.
|
Academic Significance and Societal Importance of the Research Achievements |
開発したリン化金属ナノ粒子触媒は,従来の非貴金属触媒の問題点であった安定性・活性及び耐久性を大きく改善することから現行の水素化反応プロセスをより安全で効率的なものに一新する可能性を秘めている.
|
Report
(4 results)
Research Products
(58 results)