Research Project
Grant-in-Aid for Scientific Research (B)
本研究は、安価・高効率な次世代太陽電池の一つである多重励起子生成型量子ドット太陽電池のナノ界面の構築と多重励起子の電荷分離効率向上のメカニズムの解明および高効率化への指針を与えることを目的とする。研究の目標は、①ヘテロ接合量子ドット太陽電池のナノ界面制御;② ①の系に対して、光電変換特性向上の鍵となるナノ界面での多重励起子の電荷分離効率向上のメカニズムの解明;③ ①と②の結果と光電変換特性との相関性を明らかにし、最適な電荷分離ナノ界面の構築と高効率化への筋道を得ること、の3つである。
Various interfaces in quantum dot solar cells were modified with organic molecules and inorganic materials, and due to their synergistic effect, it was possible to reduce the non-radiative recombination loss of photoexcited carriers and improve the balance between charge carrier extraction. As a result, the energy conversion efficiency of the PbS quantum dot solar cell was 15.45%, achieving the world's highest performance of the PbS quantum dot solar cell. We also evaluated the ultrafast relaxation dynamics of photoexcited carriers in quantum dots and found that the composition and surface states of quantum dots have a large effect on the relaxation of the hot carrier dynamics. This will be valuable basic data for the realization of multiple exciton-generating quantum dot solar cells in the future.
本研究の研究成果の一つとしては量子ドット太陽電池の各種界面における相乗効果を持つパッシベーション方法の開発である。開発された手法とその発想は、量子ドット太陽電池の光電変換特性を向上させる新たなアイデアを提供するだけでなく、他のヘテロ接合太陽電池や発光ダイオード(LED)にも応用可能であり、今後、さらなる高性能な光電変換デバイスへの展開が期待される。また、量子ドットの組成と表面状態は量子ドットにおけるホットキャリアの緩和に大きい影響を与えることが判明した。これらの実験結果は次世代太陽電池の候補である多重励起子生成型量子ドット太陽電池の実現のために貴重な基礎データを提供できる。
All 2023 2022 2021 2020
All Journal Article (24 results) (of which Int'l Joint Research: 16 results, Peer Reviewed: 24 results, Open Access: 6 results) Presentation (30 results) (of which Int'l Joint Research: 16 results, Invited: 3 results) Book (1 results) Patent(Industrial Property Rights) (1 results) (of which Overseas: 1 results)
CURRENT APPLIED SCIENCE AND TECHNOLOGY
Volume: 23 Issue: 2 Pages: 1-14
10.55003/cast.2022.02.23.011
Applied Energy
Volume: 341 Pages: 121124-121124
10.1016/j.apenergy.2023.121124
Nanomaterials
Volume: 13 Issue: 7 Pages: 1292-1292
10.3390/nano13071292
Advanced Materials
Volume: 11 Issue: 21
10.1002/adma.202212184
Volume: 11 Issue: 5
10.1002/adma.202207293
Science China Physics, Mechanics & Astronomy
Volume: 66 Issue: 1
10.1007/s11433-022-1918-9
Solar Energy
Volume: 247 Pages: 432-440
10.1016/j.solener.2022.10.034
Volume: 12 Issue: 18 Pages: 3101-3101
10.3390/nano12183101
Advanced Energy Materials
Volume: 12 Issue: 35 Pages: 2201676-2201676
10.1002/aenm.202201676
ACS Applied Materials & Interfaces
Volume: 14 Issue: 31 Pages: 36268-36276
10.1021/acsami.2c10508
Journal of Materials Chemistry A
Volume: 2 Issue: 20 Pages: 1000-1006
10.1039/d1ta00955a
ACS Appl. Mater. Interfaces
Volume: 13 Issue: 24 Pages: 28679-28688
10.1021/acsami.1c06410
Nature Communications
Volume: 12 Issue: 1 Pages: 4381-4384
10.1038/s41467-021-24614-7
Journal of Semiconductors
Volume: 42 Issue: 11 Pages: 110203-110203
10.1088/1674-4926/42/11/110203
Adv. Funct. Mater.
Volume: 31 Issue: 45 Pages: 2104457-2104457
10.1002/adfm.202104457
Current Applied Physics
Volume: 21 Pages: 14-19
10.1016/j.cap.2020.09.014
Journal of Physics: Conference Series
Volume: 1719 Issue: 1 Pages: 012063-012063
10.1088/1742-6596/1719/1/012063
ACS Omega
Volume: 6 Issue: 5 Pages: 3701-3710
10.1021/acsomega.0c05223
ACS Applied Nano Materials
Volume: 4 Issue: 4 Pages: 3958-3968
10.1021/acsanm.1c00324
Solar RRL
Volume: 4 Issue: 9 Pages: 2000149-2000149
10.1002/solr.202000149
Nano-Micro Letters
Volume: 12 Issue: 1 Pages: 1-14
10.1007/s40820-020-00448-8
The Journal of Physical Chemistry C
Volume: 124 Issue: 29 Pages: 15812-15817
10.1021/acs.jpcc.0c04199
ACS Energy Letters
Volume: 5 Issue: 10 Pages: 3224-3236
10.1021/acsenergylett.0c01561
ACS Applied Energy Materials
Volume: 3 Issue: 12 Pages: 11548-11558
10.1021/acsaem.0c00791