Scientific understanding of long-term corrosion of HLW glass by corrosion tests with Si-isotope
Project/Area Number |
20H02668
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 31010:Nuclear engineering-related
|
Research Institution | Kyushu University |
Principal Investigator |
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥11,310,000 (Direct Cost: ¥8,700,000、Indirect Cost: ¥2,610,000)
Fiscal Year 2022: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2021: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2020: ¥5,070,000 (Direct Cost: ¥3,900,000、Indirect Cost: ¥1,170,000)
|
Keywords | 高レベルガラス固化体 / 地層処分 / 性能評価 / ガラス溶解・変質 / 速度論的評価 / マイクロチャネル流水試験 / Si-29同位体 / 超長期溶解挙動 / 基礎科学的評価 |
Outline of Research at the Start |
本研究では、「高レベルガラス固化体」の地層処分における超長期にわたる放射性核種閉込め性能についてより現実的で信頼性の高い評価を行うために、新しく開発した「マイクロチャネル流水試験法」および「Si-29同位体」を用いて模擬ガラス固化体の溶解/変質試験を実施し、超長期に対応するシリカ(SiO2)溶存溶液条件を含む様々な環境条件でのガラス溶解/変質挙動を精密に測定評価することで、超長期ガラス溶解の機構理解を含む速度論的評価を行う。
|
Outline of Final Research Achievements |
The purpose of the present study is to establish the scientific basis for evaluation of the long-term performance of nuclear waste glass under geological disposal. The corrosion tests were performed for a simulated waste glass to evaluate the dissolution rate under various environmental conditions by using a newly developed Micro-channel flow-through test method and Si-29 isotope, and several new data were obtained on the glass dissolution rate as a function of environmental parameters. These data suggested that several kinds of elementary reactions proceed simultaneously with relations by each other to control the glass dissolution rate, which means that environmental parameters can affect the mechanism controlling the glass dissolution complicatedly.
|
Academic Significance and Societal Importance of the Research Achievements |
原子力発電で発生する高レベル放射性廃棄物は、化学的に安定な形態であるガラス固化体とし、最終的には安定な深地層中に埋設処分(地層処分)される計画である。地層処分の充分な安全性を確認する上で、ガラス固化体の放射性廃棄物保持性能、すなわちガラスの地下水への溶解速度を正確に評価することが重要になる。ガラスの溶解速度は温度、地下水組成、pH等の環境条件により複雑に変化するため、様々な環境条件でのガラス溶解速度を正確に測定し体系的に評価することが必要となる。本研究では、これまで測定されていなかった様々な環境条件での溶解速度を新たな試験手法を用いて正確に測定評価し、安全性確認のための基礎データを拡充した。
|
Report
(4 results)
Research Products
(9 results)