Creation of ultimate photon upconversion materials based on a novel triplet generation method
Project/Area Number |
20H02713
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 32020:Functional solid state chemistry-related
|
Research Institution | Kyushu University |
Principal Investigator |
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥18,070,000 (Direct Cost: ¥13,900,000、Indirect Cost: ¥4,170,000)
Fiscal Year 2022: ¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2021: ¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2020: ¥9,360,000 (Direct Cost: ¥7,200,000、Indirect Cost: ¥2,160,000)
|
Keywords | フォトン・アップコンバージョン / 光物性 / 励起三重項 |
Outline of Research at the Start |
長波長光を短波長光へと変換するフォトン・アップコンバージョンはエネルギーからバイオロジーまで幅広い分野に貢献しうる。しかしながら、太陽光程度の低い励起光強度で高効率なフォトン・アップコンバージョンを達成することは未だ困難である。本研究では効率の良い三重項の増感法や高速な三重項エネルギー拡散などを駆使し、この目標の実現を目指す。またその中で励起三重項の自在な発生と利用に関する学術的基礎を構築する。
|
Outline of Final Research Achievements |
It has been difficult to achieve high efficiency in photon upconversion (UC), which converts lower-energy light to higher-energy light, at excitation light intensities as low as sunlight. UC from visible light to ultraviolet light is also important for photocatalysis and production of useful compounds, but its efficiency was low. In this study, the problem of phase separation between sensitizer and emitter was solved by forming charge-transfer (CT) complexes, and two types of UC, green light to blue light and blue light to UV light, were successfully achieved in solids and established as a highly general method. Furthermore, by developing new chromophores, the highest UC efficiency from visible light to UV light was achieved, enabling the use of excitation light as weak as sunlight.
|
Academic Significance and Societal Importance of the Research Achievements |
固体中でのフォトン・アップコンバージョン(UC)は太陽電池や光触媒などのデバイスへの応用において重要であり、本研究で開発した新しい励起三重項生成法は固体中において様々な波長を高効率に変換する一般的な手法となりうる。また、本研究において可視光から紫外光へのUCの効率を過去の報告より大幅に増大させ、太陽光や室内光程度の弱い励起光を利用可能にしたことは、人工光合成や有用化合物の製造、殺菌や水中の有害物質の分解といった多様な応用に繋がる重要な基礎的知見が得られたと考えられる。
|
Report
(4 results)
Research Products
(64 results)