Project/Area Number |
20H02787
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 35010:Polymer chemistry-related
|
Research Institution | Kyoto University |
Principal Investigator |
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥17,810,000 (Direct Cost: ¥13,700,000、Indirect Cost: ¥4,110,000)
Fiscal Year 2022: ¥4,940,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥1,140,000)
Fiscal Year 2021: ¥5,070,000 (Direct Cost: ¥3,900,000、Indirect Cost: ¥1,170,000)
Fiscal Year 2020: ¥7,800,000 (Direct Cost: ¥6,000,000、Indirect Cost: ¥1,800,000)
|
Keywords | 両親媒性高分子 / ランダム共重合体 / 自己組織化 / ミセル / セルフソーティング / ミクロ相分離 / ハイドロゲル / ラメラ構造 / ベシクル |
Outline of Research at the Start |
本研究では、高分子鎖の自己組織化・集合構造を精密に制御できるシステムの構築を目指す。従来、高分子の自己組織化には、ブロック共重合体が主に用いられてきたが、本研究では、一次構造が制御された両親媒性ランダム共重合体やホモポリマーを用い、この「側鎖の自己組織化」を鍵として固体状でのミクロ相分離(球, シリンダー, ラメラ)や溶液中での会合構造(球状, ベシクルなど)を精密に制御する手法を確立する。これにより、従来は設計が困難であった10 nm以下の微細なナノ構造を自在に構築し、ドメインサイズを0.1 nmレベル(原子レベル)で緻密に制御した微細ミクロ相分離材料やナノ構造材料の創出へと展開する。
|
Outline of Final Research Achievements |
In this work, we designed amphiphilic polymers/random copolymers bearing hydrophilic and hydrophobic side chains to systematically investigate the self-assembly of the polymers via the association of the side chains. We successfully developed controlled self-assembly systems for nanostructured and functional materials as follows: (1) precision self-assembly of the amphiphilic polymers into small micelles in water and on-demand control of the size, aggregation number, and structures of their aggregates, (2) reversible control of co-self-assembly and self-sorting of the binary copolymer mixtures in water, and (3) creation of thermoresponsive gels, self-healing and selectively adhesive hydrogels, and sub-10 nm lamellar structure materials.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、10 nm以下のナノ会合体やミクロ相分離材料、自己修復性と選択的な接着性を併せもつハイドロゲルなどの機能性材料の創出に加え、生体内の複雑環境でタンパク質が実現するような革新的な制御自己組織化システムの構築にも成功した。これら一連の自己組織化材料は、精密なナノ構造をもつ高分子材料としてのみならず、ナノパターニングや化合物のカプセル化・デリバリー材料などとして電子情報分野や医薬分野への応用も期待され、学術的な発展のみならず、社会への波及効果も期待される。
|