Development of Supramolecular Hydrogel toward a Novel Pressure-Energy Strage System
Project/Area Number |
20H02815
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 35030:Organic functional materials-related
|
Research Institution | Osaka Metropolitan University (2022) Nara Institute of Science and Technology (2020-2021) |
Principal Investigator |
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥17,420,000 (Direct Cost: ¥13,400,000、Indirect Cost: ¥4,020,000)
Fiscal Year 2022: ¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2021: ¥7,410,000 (Direct Cost: ¥5,700,000、Indirect Cost: ¥1,710,000)
Fiscal Year 2020: ¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
|
Keywords | 自己組織化 / ヒドロゲル / 光化学 / 圧力応答 / ゲル / 光反応 / 水素結合 |
Outline of Research at the Start |
生体活動における物理的刺激の役割と影響の観点から、硬さや流動性を調節できるゲル材料への開発要求が高まっている。本研究では、圧力ストレスに応答し機械的強度を準不可逆的に強化し、さらに、光照射により高強度状態を固定化、任意に解放可能な自己組織化超分子ヒドロゲルの創成を目的とする。機械的強度を時空間制御可能な細胞培養基質や、アクチュエーター、エネルギーストレージシステムなど多様な潜在用途を有する基盤材料としてのヒドロゲルの構築を目指す。
|
Outline of Final Research Achievements |
Small molecular weight amphiphilic compounds were designed and synthesized based on the lactobionic acid derivatives for the formation of supramolecular hydrogels. The lactobionic acid moiety was expected to give a hydrogen-bonding network via multiple hydroxy groups, which should be affected by the application of hydrostatic pressure. Stable hydrogels could be obtained. The application of hydrostatic pressure (400 MPa) on the hydrogels resulted in the bundling of amphiphilic nanofibers. Charge transfer (CT) interactions between aromatic groups including pyrene and naphthalenediimide were also introduced in the nanofiber. The CT interaction was also reinforced by applying hydrostatic pressure. The applicaiton of hydrostatic pressure on supramolecular hydrogels was expected to have an impact on the strengthening of intra- and inter-nanofiber interactions such as CT- and hydrogen-bonding interactions, leading to the increase of mechanical properties of hydrogels.
|
Academic Significance and Societal Importance of the Research Achievements |
医療用インジェクタブルゲルなどの応用の観点から、架橋性高分子によらない、超分子ヒドロゲルの開発への期待は大きい。特に、細胞親和性を有する糖誘導体からなるヒドロゲルは有望な材料であるが、分子設計以外でその機械強度を制御する手法はほとんどなかった。今回、高圧印加によりゲルファイバーのバンドル化が促進され、さらに、除圧後も保たれることを見出した。本成果は、水素結合性ヒドロゲルへの圧力処理がゲルの機械特性制御への有力なアプローチとなることを支持するものである。今後、よりシンプルな糖誘導体の分子設計と加圧処理を組み合わせることで、汎用性の高い医療用ヒドロゲルの開発が進められることが期待される。
|
Report
(4 results)
Research Products
(13 results)