• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Explainable AI diagnostic system for breast cancer using tomosynthesis

Research Project

Project/Area Number 20H03738
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 55010:General surgery and pediatric surgery-related
Research InstitutionTohoku University

Principal Investigator

Takuya Ueda  東北大学, 医学系研究科, 教授 (40361448)

Co-Investigator(Kenkyū-buntansha) 佐谷 望  東北医科薬科大学, 医学部, 助教 (50816444)
原田 達也  東京大学, 先端科学技術研究センター, 教授 (60345113)
森 菜緒子  東北大学, 医学系研究科, 助教 (90535064)
Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥17,550,000 (Direct Cost: ¥13,500,000、Indirect Cost: ¥4,050,000)
Fiscal Year 2023: ¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2022: ¥4,940,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥1,140,000)
Fiscal Year 2021: ¥4,940,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥1,140,000)
Fiscal Year 2020: ¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Keywords人工知能 / 説明可能人工知能 / 乳癌 / マンモグラフィ / 診断支援 / 深層学習 / 画像診断
Outline of Research at the Start

高トモシンセシスは、乳癌の新たな画像診断法として注目を集めている。近年深層学習/人工知能(AI)の医療画像診断への応用が進んでいるが、スライスが多いトモシンセシスは診断医への負担が高く、AIシステムによる診断医の負担軽減と診断精度の向上が期待されている。一方、AIの医療応用ではそのブラックボックス性が問題となっており、信頼性の確立が急務である。
本研究では、説明可能AIを用いて信頼性と汎化性能の高いトモシンセシス画像診断支援システムの開発を行う。このシステムを確立できれば、トモシンセシスの恩恵をより多くの患者が享受可能となり、乳癌診断精度が上がることで治療成績の向上に寄与できると考える。

Outline of Final Research Achievements

This research aims to provide high-precision breast cancer diagnostic support, explainability of AI decision-making, and promote clinical application through the analysis of breast cancer tomosynthesis images using AI. Specifically, the study developed the "BilAD" AI model, which incorporates diagnostic physicians' reading insights and anticipates bilateral differences. Additionally, research progressed on an AI model for predicting stromal invasion, crucial for prognostic determination in clinical settings. Furthermore, a model predicting the expression of the biomarker Ki-67 was developed, contributing valuable information for formulating patients' treatment plans. These models have demonstrated high diagnostic capabilities, aiding in ensuring explainability and enhancing the robustness of results in the clinical application of AI for breast cancer diagnosis.

Academic Significance and Societal Importance of the Research Achievements

本研究では、説明可能AIの導入により、医師はAIの判断プロセスを理解しやすくなり、AIの提案する診断に対してより深い洞察を持ち、最終的な医療判断を下す際の透明性と信頼性が向上しました。また、予後予測AIにおいては、Ki-67などの生物学的マーカーを用いて乳がんの攻撃性や治療戦略を早期に予測することで、個別化医療の実現に貢献し、患者の治療成績の向上とQOLの向上を目指します。これらの成果は、精密でパーソナライズされた医療提供を推進します。

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Annual Research Report
  • 2021 Annual Research Report
  • 2020 Annual Research Report
  • Research Products

    (10 results)

All 2024 2023 2022 2021 2020

All Journal Article (6 results) (of which Peer Reviewed: 6 results,  Open Access: 4 results) Presentation (4 results) (of which Int'l Joint Research: 1 results)

  • [Journal Article] Deep learning model to predict Ki-67 expression of breast cancer using digital breast tomosynthesis2024

    • Author(s)
      Oba Ken、Adachi Maki、Kobayashi Tomoya、Takaya Eichi、Shimokawa Daiki、Fukuda Toshinori、Takahashi Kengo、Yagishita Kazuyo、Ueda Takuya、Tsunoda Hiroko
    • Journal Title

      Breast Cancer

      Volume: 29 Pages: 48-59

    • DOI

      10.1007/s12282-024-01549-7

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Machine learning approach to stratify complex heterogeneity of chronic heart failure: A report from the CHART-2 study2023

    • Author(s)
      Nakano Kenji、Nochioka Kotaro、Yasuda Satoshi、Tamori Daito、Shiroto Takashi、Sato Yudai、Takaya Eichi、Miyata Satoshi、Kawakami Eiryo、Ishikawa Tetsuo、Ueda Takuya、Shimokawa Hiroaki
    • Journal Title

      ESC Heart Failure

      Volume: 10 Issue: 3 Pages: 1597

    • DOI

      10.1002/ehf2.14288

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Deep learning model for breast cancer diagnosis based on bilateral asymmetrical detection (BilAD) in digital breast tomosynthesis images2022

    • Author(s)
      Daiki Shimokawa, Kengo Takahashi, Daiya Kurosawa, Eichi Takaya, Ken Oba, Kazuyo Yagishita, Toshinori Fukuda, Hiroko Tsunoda, Takuya Ueda
    • Journal Title

      Radiological Physics and Technology

      Volume: 16 Issue: 1 Pages: 20-27

    • DOI

      10.1007/s12194-022-00686-y

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Statistical Analysis of Mortality Rates of Coronavirus Disease 2019 (COVID-19) Patients in Japan Across the 4C Mortality Score Risk Groups, Age Groups, and Epidemiological Waves: A Report From the Nationwide COVID-19 Cohort2022

    • Author(s)
      Baba Hiroaki、Ikumi Saori、Aoyama Shotaro、Ishikawa Tetsuo、Asai Yusuke、Matsunaga Nobuaki、Ohmagari Norio、Kanamori Hajime、Tokuda Koichi、Ueda Takuya、Kawakami Eiryo
    • Journal Title

      Open Forum Infectious Diseases

      Volume: 10 Issue: 1

    • DOI

      10.1093/ofid/ofac638

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Effect of the Pixel Interpolation Method for Downsampling Medical Images on Deep Learning Accuracy.2021

    • Author(s)
      Hirahara D, Takaya E, Kadowaki M, Kobayashi,Y and Ueda,T
    • Journal Title

      Scientific Research Publishing

      Volume: 9 Issue: 11 Pages: 150-156

    • DOI

      10.4236/jcc.2021.911010

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Effects of data count and image scaling on Deep Learning training2020

    • Author(s)
      Hirahara Daisuke、Takaya Eichi、Takahara Taro、Ueda Takuya
    • Journal Title

      PeerJ Computer Science

      Volume: 6 Pages: e312-e312

    • DOI

      10.7717/peerj-cs.312

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Presentation] 乳癌の深層学習Segmentationにおける人工生成Fractal画像を用いた転移学習の有効性の検討2023

    • Author(s)
      八島拓海
    • Organizer
      第32回日本乳癌画像研究会
    • Related Report
      2022 Annual Research Report
  • [Presentation] Differentiating between invasive and non-invasive breast carcinomas in digital breast tomosynthesis using deep convolutional neural networks2021

    • Author(s)
      Daiki Shimokawa, Kengo Takahashi, Kiichi Shibuya, Takuma Usuzaki, Mizuki Kadowaki, Eichi Takaya, Toshinori Fukuda, Ken Oba, Takuya Ueda
    • Organizer
      European Congress of Radiology 2021
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 医学的見地を考慮した病変分類に基づく、乳房トモシンセシスの乳癌画像診断AIモデルの検討2021

    • Author(s)
      安達眞紀,川口くらら,金野智史,大庭建,髙屋英知,八木下和代,角田博子,植田琢也
    • Organizer
      第31回日本乳癌画像研究会
    • Related Report
      2021 Annual Research Report
  • [Presentation] Differentiating between invasive and non-invasive breast carcinomas in digital breast tomosynthesis using deep convolutional neural networks2021

    • Author(s)
      Daiki Shimokawa
    • Organizer
      European Congress of Radiology
    • Related Report
      2020 Annual Research Report

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi