• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Machine learning for decision making based on complex structured data

Research Project

Project/Area Number 20H04244
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 61030:Intelligent informatics-related
Research InstitutionKyoto University

Principal Investigator

Kashima Hisashi  京都大学, 情報学研究科, 教授 (80545583)

Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥17,550,000 (Direct Cost: ¥13,500,000、Indirect Cost: ¥4,050,000)
Fiscal Year 2023: ¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2022: ¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2021: ¥5,070,000 (Direct Cost: ¥3,900,000、Indirect Cost: ¥1,170,000)
Fiscal Year 2020: ¥5,460,000 (Direct Cost: ¥4,200,000、Indirect Cost: ¥1,260,000)
Keywords機械学習 / 人工知能 / 因果推論 / グラフ / 意思決定 / 深層学習 / グラフ構造データ / グラフ深層学習
Outline of Research at the Start

社会実装が進む機械学習技術が一層の発展を遂げるために必要なのが、現実世界に現れる複雑なデータへの対応と、これらに基づく意思決定への直接的貢献である。本研究では、機械学習の適用範囲を一層拡大するべく、複雑な関係構造をもつデータを扱うグラフ深層学習法を発展させるとともに、より直接的に意思決定に寄与するデータ解析手法として、因果推論に着目し、様々な複雑な状況に対応できる因果効果推定法の研究を行う。

Outline of Final Research Achievements

First, with the aim of expanding the applicability of machine learning, we improved the performance of deep learning methods for graph-structured data, and developed models that are more expressive than conventional models and effective learning methods for them. In addition, with the aim of expanding the applicability of data-driven decision making, we developed causal effect estimation methods in situations where confounding variables are unknown, applied causal effect estimation to the field of chemistry, and developed predictive modeling methods for small data. Furthermore, we combined graph deep learning and causal inference to develop causal effect estimation for interventions with graph structure and causal effect estimation methods on graphs.

Academic Significance and Societal Importance of the Research Achievements

グラフ構造データは、ソーシャルネットワーク、分子構造、交通網など多様な分野で見られる。高い性能をもつグラフ深層学習モデルの開発、さらには深層因果推論手法との融合によって、これらの分野におけるより高度な意思決定を可能とし、新薬の発見、交通最適化、社会的ダイナミクスの理解など様々な実世界応用の可能性をもつ。

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Annual Research Report
  • 2021 Annual Research Report
  • 2020 Annual Research Report
  • Research Products

    (20 results)

All 2024 2023 2022 2021

All Journal Article (20 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 20 results,  Open Access: 13 results)

  • [Journal Article] Treatment Effect Estimation Under Unknown Interference2024

    • Author(s)
      Lin Xiaofeng, Hisashi Kashima
    • Journal Title

      Proceedings of the 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD)

      Volume: 28

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Recovering Population Dynamics from a Single Point Cloud Snapshot2024

    • Author(s)
      Yuki Wakai, Koh Takeuchi, Hisashi Kashima
    • Journal Title

      Proceedings of the 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD)

      Volume: 28

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Hisashi Kashima. Estimating Treatment Effects Under Heterogeneous Interference2023

    • Author(s)
      Xiaofeng Lin, Guoxi Zhang, Xiaotian Lu, Han Bao, Koh Takeuchi, Hisashi Kashima
    • Journal Title

      Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD)

      Volume: LNAI14169 Pages: 576-592

    • DOI

      10.1007/978-3-031-43412-9_34

    • ISBN
      9783031434112, 9783031434129
    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Causal Effect Estimation on Hierarchical Spatial Graph Data2023

    • Author(s)
      Koh Takeuchi, Ryo Nishida, Hisashi Kashima, Masaki Onishi
    • Journal Title

      Proceedings of the 29th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)

      Volume: 23 Pages: 2145-2154

    • DOI

      10.1145/3580305.3599269

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] GraphITE: Estimating Individual Effects of Graph-structured Treatments2022

    • Author(s)
      原田 将之介, 鹿島 久嗣
    • Journal Title

      Transactions of the Japanese Society for Artificial Intelligence

      Volume: 37 Issue: 6 Pages: D-M73_1-11

    • DOI

      10.1527/tjsai.37-2_D-M73

    • ISSN
      1346-0714, 1346-8030
    • Year and Date
      2022-11-01
    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] InfoCEVAE: Treatment Effect Estimation with Hidden Confounding Variables Matching2022

    • Author(s)
      Shonosuke Harada, Hisashi Kashima
    • Journal Title

      Machine Learning

      Volume: 2 Issue: 4 Pages: 1-19

    • DOI

      10.1007/s10994-022-06246-0

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Chemical Property Prediction Under Experimental Biases2022

    • Author(s)
      Yang Liu, Hisashi Kashima
    • Journal Title

      Scientific Reports

      Volume: 8206 Issue: 1

    • DOI

      10.1038/s41598-022-12116-5

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Improving imbalanced classification using near-miss instances2022

    • Author(s)
      Tanimoto Akira、Yamada So、Takenouchi Takashi、Sugiyama Masashi、Kashima Hisashi
    • Journal Title

      Expert Systems with Applications

      Volume: 201 Pages: 117130-117130

    • DOI

      10.1016/j.eswa.2022.117130

    • Related Report
      2022 Annual Research Report 2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Constant Time Graph Neural Networks2022

    • Author(s)
      Ryoma Sato, Makoto Yamada, Hisashi Kashima
    • Journal Title

      ACM Transactions on Knowledge Discovery from Data (TKDD)

      Volume: 16 Issue: 5 Pages: 1-31

    • DOI

      10.1145/3502733

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Poincare: Recommending Publication Venues via Treatment Effect Estimation2022

    • Author(s)
      Ryoma Sato, Makoto Yamada, Hisashi Kashima
    • Journal Title

      Journal of Informetrics

      Volume: 16 Issue: 2 Pages: 101283-101283

    • DOI

      10.1016/j.joi.2022.101283

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] 反事実伝播: 介入効果推定のための半教師付き学習2022

    • Author(s)
      原田 将之介, 鹿島 久嗣
    • Journal Title

      人工知能学会論文誌

      Volume: 37

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Bayesian optimization with partially specified queries2022

    • Author(s)
      Shogo Hayashi, Junya Honda, Hisashi Kashima
    • Journal Title

      Machine Learning

      Volume: 111 Issue: 3 Pages: 1019-1048

    • DOI

      10.1007/s10994-021-06079-3

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Predicting Anesthetic Infusion Events Using Machine Learning2021

    • Author(s)
      Naoki Miyaguchi, Koh Takeuchi, Hisashi Kashima, Mizuki Morita, Hiroshi Morimatsu
    • Journal Title

      Scientific Reports

      Volume: 11 Issue: 1

    • DOI

      10.1038/s41598-021-03112-2

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] GraphITE: Estimating Individual Effects of Graph-structured Treatments2021

    • Author(s)
      Shonosuke Harada, Hisashi Kashima
    • Journal Title

      Proceedings of the 30th ACM International Conference on Information and Knowledge Management (CIKM)

      Volume: 30 Pages: 659-668

    • DOI

      10.1145/3459637.3482349

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Learning to Rank for Multi-step Ahead Time-Series Forecasting2021

    • Author(s)
      Jiuding Duan, Hisashi Kashima
    • Journal Title

      IEEE Access

      Volume: 9 Pages: 49372-49386

    • DOI

      10.1109/access.2021.3068895

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Inter-domain Multi-relational Link Prediction2021

    • Author(s)
      Luu Huu Phuc, Koh Takeuchi, Seiji Okajima, Arseny Tolmachev, Tomoyoshi Takebayashi, Koji Maruhashi, Hisashi Kashima
    • Journal Title

      Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD),

      Volume: LNAI12979 Pages: 285-301

    • DOI

      10.1007/978-3-030-86520-7_18

    • ISBN
      9783030865191, 9783030865207
    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Crowdsourcing Evaluation of Saliency-Based XAI Methods2021

    • Author(s)
      Lu Xiaotian, Arseny Tolmachev, Tatsuya Yamamoto, Koh Takeuchi, Seiji Okajima, Tomoyoshi Takebayashi, Koji Maruhashi, Hisashi Kashima
    • Journal Title

      Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD),

      Volume: LNAI12979 Pages: 431-446

    • DOI

      10.1007/978-3-030-86517-7_27

    • ISBN
      9783030865160, 9783030865177
    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Causal Combinatorial Factorization Machines for Set-wise Recommendation2021

    • Author(s)
      Akira Tanimoto, Tomoya Sakai, Takashi Takenouchi, Hisashi Kashima
    • Journal Title

      Proceedings of the 25th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD)

      Volume: LNAI12713 Pages: 498-509

    • DOI

      10.1007/978-3-030-75765-6_40

    • ISBN
      9783030757649, 9783030757656
    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Regret Minimization for Causal Inference on Large Treatment Space2021

    • Author(s)
      Akira Tanimoto, Tomoya Sakai, Takashi Takenouchi, Hisashi Kashima
    • Journal Title

      Proceedings of The 24th International Conference on Artificial Intelligence and Statistics (AISTATS)

      Volume: PMLR130 Pages: 946-954

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Random Features Strengthen Graph Neural Networks2021

    • Author(s)
      Ryoma Sato, Makoto Yamada, Hisashi Kashima
    • Journal Title

      Proceedings of SIAM International Conference on Data Mining (SDM)

      Volume: - Pages: 333-341

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi