• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of deep learning to reveal physical human-robot interaction and its application to safe robot control

Research Project

Project/Area Number 20H04265
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 61050:Intelligent robotics-related
Research InstitutionNational Institute of Informatics (2023)
Nara Institute of Science and Technology (2020-2022)

Principal Investigator

Kobayashi Taisuke  国立情報学研究所, 情報学プリンシプル研究系, 助教 (10796452)

Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥17,420,000 (Direct Cost: ¥13,400,000、Indirect Cost: ¥4,020,000)
Fiscal Year 2023: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2022: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2021: ¥11,830,000 (Direct Cost: ¥9,100,000、Indirect Cost: ¥2,730,000)
Fiscal Year 2020: ¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Keywords深層学習 / 強化学習 / 潜在空間抽出 / 確率的勾配降下法 / ヒューマンロボットインタラクション / 世界モデル
Outline of Research at the Start

本研究では,多自由度系のロボットとヒトとの物理的接触を安全にするための学習制御技術を提案する.そのために,ロボットとヒトとの身体的相互作用に関して潜在的に重要な情報を低次元の潜在空間へと抽出する深層学習技術を開発する.また,得られた潜在空間を活用して,ロボットがヒトとどのように身体的相互作用すれば良いのかを計画あるいは予測して行動するような学習型制御技術を開発する.これらの基盤技術を組み合わせることで,ロボットとヒトとの物理的接触を特定のシーンのみでなく汎用的に達成することを目指す.

Outline of Final Research Achievements

This study aims to develop learning and control techniques for safe physical interaction between robots and humans. In relation to this scenario, four technical results have been obtained mainly: i) a well-formed latent space extraction technique based on Tsallis statistics; ii) a smoothing technique for reinforcement learning action; iii) a new theory of Sim-to-Real as multiobjective reinforcement learning; and iv) a stochastic gradient descent method robust to noise and outliers. In addition, two applications have been conducted mainly: i) analysis of periodic motion of indirect physical human-robot interaction; and ii) footstep planning of bipeds with discrete changes of contact states.

Academic Significance and Societal Importance of the Research Achievements

本研究の技術的成果はどれも,本研究の想定する物理的接触を含む問題を通じて開発された一方で,それのみで機能するような限定的に組み立てられた技術ではなく,より多くの問題での活躍が期待されるような理論的かつ汎用的なものとなっている.これは,実用性を志向することで機械学習分野に広がりをもたらし,高い学術的意義がある.また,これらの技術やその開発を通じて得られた知見により,物理的接触を含むような実ロボットの制御やインタラクションの解析などを達成しており,従来よりも複雑な社会的に需要のある作業へのロボット導入へと繋がるものと期待できる.

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Annual Research Report
  • 2021 Annual Research Report
  • 2020 Annual Research Report
  • Research Products

    (30 results)

All 2024 2023 2022 2021 2020

All Journal Article (11 results) (of which Peer Reviewed: 11 results,  Open Access: 1 results) Presentation (19 results) (of which Int'l Joint Research: 7 results)

  • [Journal Article] Constrained footstep planning using model-based reinforcement learning in virtual constraint-based walking2024

    • Author(s)
      Jin Takanori、Kobayashi Taisuke、Matsubara Takamitsu
    • Journal Title

      Advanced Robotics

      Volume: 38 Issue: 8 Pages: 525-545

    • DOI

      10.1080/01691864.2024.2336253

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] AdaTerm: Adaptive T-distribution estimated robust moments for Noise-Robust stochastic gradient optimization2023

    • Author(s)
      Ilboudo Wendyam Eric Lionel、Kobayashi Taisuke、Matsubara Takamitsu
    • Journal Title

      Neurocomputing

      Volume: 557 Pages: 126692-126692

    • DOI

      10.1016/j.neucom.2023.126692

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Reward bonuses with gain scheduling inspired by iterative deepening search2023

    • Author(s)
      Kobayashi Taisuke
    • Journal Title

      Results in Control and Optimization

      Volume: 12 Pages: 100244-100244

    • DOI

      10.1016/j.rico.2023.100244

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Sparse representation learning with modified q-VAE towards minimal realization of world model2023

    • Author(s)
      Kobayashi Taisuke、Watanuki Ryoma
    • Journal Title

      Advanced Robotics

      Volume: 37 Issue: 13 Pages: 807-827

    • DOI

      10.1080/01691864.2023.2221715

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Proximal policy optimization with adaptive threshold for symmetric relative density ratio2023

    • Author(s)
      Kobayashi Taisuke
    • Journal Title

      Results in Control and Optimization

      Volume: 10 Pages: 100192-100192

    • DOI

      10.1016/j.rico.2022.100192

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Latent Representation in Human-Robot Interaction With Explicit Consideration of Periodic Dynamics2022

    • Author(s)
      Kobayashi Taisuke、Murata Shingo、Inamura Tetsunari
    • Journal Title

      IEEE Transactions on Human-Machine Systems

      Volume: 52 Issue: 5 Pages: 928-940

    • DOI

      10.1109/thms.2022.3182909

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Adaptive and multiple time-scale eligibility traces for online deep reinforcement learning2022

    • Author(s)
      Kobayashi Taisuke
    • Journal Title

      Robotics and Autonomous Systems

      Volume: 151 Pages: 104019-104019

    • DOI

      10.1016/j.robot.2021.104019

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Sparse Latent Space Acquisition with Variational Autoencoders Based on Tsallis Statistics2022

    • Author(s)
      Watanuki Ryoma、Kobayashi Taisuke、Sugimoto Kenji
    • Journal Title

      Journal of the Robotics Society of Japan

      Volume: 40 Issue: 3 Pages: 251-254

    • DOI

      10.7210/jrsj.40.251

    • ISSN
      0289-1824, 1884-7145
    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] t-soft update of target network for deep reinforcement learning2021

    • Author(s)
      Kobayashi Taisuke, Ilboudo Wendyam Eric Lionel
    • Journal Title

      Neural Networks

      Volume: 136 Pages: 63-71

    • DOI

      10.1016/j.neunet.2020.12.023

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] 拡大Tchebyshev関数を用いた多目的最適化としての潜在ダイナミクスモデルの学習2021

    • Author(s)
      武田 敏季,小林 泰介,杉本 謙二
    • Journal Title

      日本ロボット学会誌

      Volume: -

    • NAID

      130008117307

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] q-VAE for Disentangled Representation Learning and Latent Dynamical Systems2020

    • Author(s)
      Kobayashi Taisuke
    • Journal Title

      IEEE Robotics and Automation Letters

      Volume: 5 Issue: 4 Pages: 5669-5676

    • DOI

      10.1109/lra.2020.3010206

    • NAID

      120006949517

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Presentation] Consolidated Adaptive T-soft Update for Deep Reinforcement Learning2024

    • Author(s)
      Kobayashi Taisuke
    • Organizer
      IEEE World Congress on Computational Intelligence
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Domains as Objectives: Multi-Domain Reinforcement Learning with Convex-Coverage Set Learning for Domain Uncertainty Awareness2023

    • Author(s)
      Ilboudo Wendyam Eric Lionel、Kobayashi Taisuke、Matsubara Takamitsu
    • Organizer
      IEEE/RSJ International Conference on Intelligent Robots and Systems
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Mirror-Descent Inverse Kinematics with Box-constrained Joint Space2023

    • Author(s)
      Kobayashi Taisuke、Jin Takanori
    • Organizer
      World Congress of the International Federation of Automatic Control
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] リカレント分散強化学習によるヒステリシスと個体差に頑健な空気圧人工筋の制御2023

    • Author(s)
      岡田 颯太,小林 泰介,松原 崇充
    • Organizer
      自律分散システム・シンポジウム
    • Related Report
      2022 Annual Research Report
  • [Presentation] L2C2: Locally Lipschitz Continuous Constraint towards Stable and Smooth Reinforcement Learning2022

    • Author(s)
      Kobayashi Taisuke
    • Organizer
      IEEE/RSJ International Conference on Intelligent Robots and Systems
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Noise-Aware Stochastic Gradient Optimization with AdaTerm2022

    • Author(s)
      Ilboudo Wendyam Eric Lionel, Kobayashi Taisuke, Matsubara Takamitsu
    • Organizer
      IEEE/RSJ International Conference on Intelligent Robots and Systems
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Reformulating Multi-Domain Reinforcement Learning under a Pseudo Multi-Objective Reinforcement Learning Framework2022

    • Author(s)
      Ilboudo Wendyam Eric Lionel, Kobayashi Taisuke, Matsubara Takamitsu
    • Organizer
      日本ロボット学会学術講演会
    • Related Report
      2022 Annual Research Report
  • [Presentation] フェヒナーの法則に従う強化学習則の挙動解析2022

    • Author(s)
      高橋 慶一郎,小林 泰介,松原 崇充
    • Organizer
      日本ロボット学会学術講演会
    • Related Report
      2022 Annual Research Report
  • [Presentation] リミットサイクル型歩行における長期予測精度の検証2022

    • Author(s)
      神 孝典,小林 泰介,松原 崇充
    • Organizer
      日本ロボット学会学術講演会
    • Related Report
      2022 Annual Research Report
  • [Presentation] 現方策による経験の到達可能性を考慮した強化学習2022

    • Author(s)
      米澤 壮太郎,小林 泰介,松原 崇充
    • Organizer
      計測自動制御学会システムインテグレーション部門講演会
    • Related Report
      2022 Annual Research Report
  • [Presentation] 強化学習における指数移動平均フィルタの統合2021

    • Author(s)
      佐伯 雄飛,小林 泰介,杉本 謙二
    • Organizer
      日本ロボット学会学術講演会
    • Related Report
      2021 Annual Research Report
  • [Presentation] カルバック・ライブラ情報量に関する最適化問題としてのリスク回避型強化学習の提案2021

    • Author(s)
      小林 泰介
    • Organizer
      日本ロボット学会学術講演会
    • Related Report
      2021 Annual Research Report
  • [Presentation] ツァリス統計に基づく変分オートエンコーダによるスパースな潜在空間の獲得2021

    • Author(s)
      綿貫 零真,小林 泰介,杉本 謙二
    • Organizer
      日本ロボット学会学術講演会
    • Related Report
      2021 Annual Research Report
  • [Presentation] 強化学習における局所リプシッツ連続に関する正則化2021

    • Author(s)
      小林 泰介
    • Organizer
      自律分散システム・シンポジウム
    • Related Report
      2021 Annual Research Report
  • [Presentation] 拡大Tchebyshev関数を用いた多目的最適化としての潜在動的モデルの学習2021

    • Author(s)
      武田 俊季,小林 泰介,杉本 謙二
    • Organizer
      制御部門マルチシンポジウム
    • Related Report
      2020 Annual Research Report
  • [Presentation] Towards Deep Robot Learning with Optimizer Applicable to Non-Stationary Problems2021

    • Author(s)
      Kobayashi Taisuke
    • Organizer
      IEEE/SICE International Symposium on System Integration
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Proximal Policy Optimization with Relative Pearson Divergence2021

    • Author(s)
      Kobayashi Taisuke
    • Organizer
      IEEE International Conference on Robotics and Automation
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 潜在空間におけるモデル予測制御2020

    • Author(s)
      武田 敏季,小林 泰介,杉本 謙二
    • Organizer
      ロボティクス・メカトロニクス講演会
    • Related Report
      2020 Annual Research Report
  • [Presentation] 紐解かれた潜在空間抽出のためのツァリス統計型変分オートエンコーダ2020

    • Author(s)
      小林 泰介
    • Organizer
      ロボティクス・メカトロニクス講演会
    • Related Report
      2020 Annual Research Report

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi