Estimation of Human Sleepiness based on Intelligent Spaces and Machine Learning
Project/Area Number |
20H04266
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 61050:Intelligent robotics-related
|
Research Institution | Chuo University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
田村 裕 中央大学, 理工学部, 教授 (60227288)
長津 裕己 岐阜工業高等専門学校, その他部局等, 准教授 (60804987)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥18,070,000 (Direct Cost: ¥13,900,000、Indirect Cost: ¥4,170,000)
Fiscal Year 2022: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2021: ¥6,760,000 (Direct Cost: ¥5,200,000、Indirect Cost: ¥1,560,000)
Fiscal Year 2020: ¥10,140,000 (Direct Cost: ¥7,800,000、Indirect Cost: ¥2,340,000)
|
Keywords | 空間知能化 / 機械学習 / 眠気推定 / 生体情報 / 状態推定 / Wifi / センサーネットワーク |
Outline of Research at the Start |
近年、自動車運転支援技術の発展により、車が起因となる交通事故割合は減少しているが、居眠り運転などのヒューマンエラーが原因となる交通事故割合は増加している。この問題を解決するために、心拍を非接触で測定し、且つ顔表情の測定可能な視覚センサを中心に様々な生体情報を測定する。それらのセンサを空間知能化に基づき配置し、センサの役割を空間全体に拡張する。測定したデータを用いて人の眠気推定を行い、さらに、個人差による差異を吸収するために機械学習を適用する。測定したデータはクラウド上で共有し、常に学習し続けることで、データの収集及び眠気推定の精度の向上を行い、ヒューマンエラーに起因する事故の減少を目指す。
|
Outline of Final Research Achievements |
Regarding driver drowsiness that causes traffic accidents, we have developed a technology that uses electrodes embedded in the seat, a camera that captures the driver's face, and Wi-Fi (radio waves) to acquire biological information such as heartbeats without restraint and contact. We have developed a system that accurately estimates drowsiness during driving using techniques such as machine learning and deep learning. It is a spatial intelligence technology that makes the driving space itself smarter, and it not only contributes to the prevention of traffic accidents, but can also be applied to estimate the quality of sleep in daily life at home.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、運転時にドライバーに負担をかけない非拘束・非接触の電極、カメラ、Wifi(電波)のセンサ技術を開発した。これらの技術はドライバーの眠気だけではなく家屋での睡眠の質の推定にも適用できるものである。さらに、機械学習・深層学習を用いることにより眠気だけでなく血圧、血中酸素濃度の推定も可能であることを示した。日常生活でわざわざ計測するという手間をかけずに健康に関するデータを簡単に取得できるので応用範囲はとても広いと思われる。
|
Report
(4 results)
Research Products
(30 results)