• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Novel function of H2AX in maintenance genome integrity through the regulation of gene expression.

Research Project

Project/Area Number 20H04331
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 63020:Radiation influence-related
Research InstitutionIbaraki University

Principal Investigator

Nakamura Asako  茨城大学, 基礎自然科学野, 教授 (70609601)

Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥17,810,000 (Direct Cost: ¥13,700,000、Indirect Cost: ¥4,110,000)
Fiscal Year 2023: ¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2022: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2021: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2020: ¥8,060,000 (Direct Cost: ¥6,200,000、Indirect Cost: ¥1,860,000)
Keywordsヒストン / 遺伝子発現制御 / 相同組換え修復 / DNA損傷 / 上皮間葉転換 / H2AX / 相同組み換え修復 / 相同組換え / 相同組み換え / 発現制御
Outline of Research at the Start

ヒストンH2AXは、DNA二本鎖切断(double-strand break: DSB)が生じた際に直ちにリン酸化されることでDNA損傷応答を活性化させる、いわばDNA損傷応答の初期応答マーカーである。このH2AXがクロマチン制御を介した遺伝子発現制御機能を有していることが示唆されている。本研究はH2AXがどのようなメカニズムで遺伝子発現制御を行っているのか、またその生物学的な意義は何であるかを明確にすることを最終目的としている。

Outline of Final Research Achievements

Several studies revealed the novel regulatory mechanism of gene expression by histone H2AX, one of the proteins that play an important role in DNA double-strand break repair. In this study, we comprehensively analyzed the gene expression pattern in H2AX-deficient cells by RNA sequencing and found that the expression of genes involved in homologous recombination repair and the genes of signaling pathways for cell proliferation, adhesion, and differentiation were found was significantly upregulated even in non-damage-induced cells. These results propose a new function for H2AX, in which H2AX not only functions in genome stability during the occurrence of DNA damage, but also regulates gene expression to maintain homeostasis of the organism regardless DNA damage.

Academic Significance and Societal Importance of the Research Achievements

本研究によって、H2AXによるこれまでに知られていなかった新しい遺伝子発現制御機能が明らかとなった。特に増殖シグナル制御、上皮間葉転換制御、DNA損傷修復制御、という生物の恒常性に重要なシグナル経路の遺伝子発現制御機能を明確にする本研究成果は、将来的にがん予防や様々な疾病に対する新規治療標的の提言につながると期待される。さらに特筆すべき点として、H2AXは多くの真核生物で進化的に高く保存されていることから、本研究の完遂は生物に共通した遺伝子発現制御機構の新たな発見につながる。

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Annual Research Report
  • 2021 Annual Research Report
  • 2020 Annual Research Report
  • Research Products

    (2 results)

All 2023 2021

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (1 results)

  • [Journal Article] An Enriched Environment Alters DNA Repair and Inflammatory Responses After Radiation Exposure2021

    • Author(s)
      Sakama Sae、Kurusu Keisuke、Morita Mayu、Oizumi Takashi、Masugata Shinya、Oka Shohei、Yokomizo Shinya、Nishimura Mayumi、Morioka Takamitsu、Kakinuma Shizuko、Shimada Yoshiya、Nakamura Asako J.
    • Journal Title

      Frontiers in Immunology

      Volume: 12 Pages: 1-11

    • DOI

      10.3389/fimmu.2021.760322

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] Investigation of the regulatory mechanism of adherens junction mediated by H2AX in human colon cancer cells2023

    • Author(s)
      Higano Raiha, Marina Seki, Kazuya Oizumi, Terumi Washio, Asako Nakamura
    • Organizer
      日本放射線影響学会第66回大会
    • Related Report
      2023 Annual Research Report

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi