• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

極小表現における解析

Research Project

Project/Area Number 20J00024
Research Category

Grant-in-Aid for JSPS Fellows

Allocation TypeSingle-year Grants
Section国内
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionHokkaido University

Principal Investigator

田森 宥好  北海道大学, 理学研究院, 特別研究員(PD)

Project Period (FY) 2020-04-24 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2022: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
KeywordsLaguerre半群 / Strichartz評価 / 極小表現 / 周期 / 対称対 / A型 / 簡約群 / L関数
Outline of Research at the Start

極小表現とは,実単純Lie群の無限次元の既約表現の中で特別に小さいもののことをいう.実斜交群の被覆群のWeil表現の既約成分は極小表現の代表的な例であり,テータ対応(部分群の表現とみたときの分岐則を介して得られる二つの群の表現の部分対応)や調和振動子の束縛状態全体としての構成を通して数理物理,特殊関数論,表現論において重要な役割を持つ.本研究では,他の極小表現に対しても同様の分岐則や構成が得られるかを,既に得られている別の構成を介して調べる.

Outline of Annual Research Achievements

非アルキメデス局所体上の準分裂な連結簡約群の不分岐L関数の、ある有限次元空間へのHecke作用の固有多項式を用いた新しい表示に関する投稿論文(大井雅雄氏、坂本龍太郎氏と共同)が出版された。
Ben Said-Kobayashi-Orstedは、実メタプレクティック群Mp(N,R)と不定値直交群O(N+1,2)の極小表現をSL(2,R)の普遍被覆群の表現としてパラメータkとaを用いて変形させて繋げることで、Hermite半群(k=0, a=2)とLaguerre半群(k=0, a=1)を一般化するような半群を構成し、その積分核を与えた。この半群は(k,a)-generalized Laguerre semigroupと呼ばれる。Hermite半群やLaguerre半群に対してはStrichartz評価が成り立つことが知られているが、一般の(k,a)-generalized Laguerre semigroupに対しても成り立つかは不明であった。平良晃一氏と共同で、1<=a<=2または0<a<1かつk=0ならば(k,a)-generalized Laguerre semigroupに対してもStrichartz評価が成り立つことを示した。この結果は正の実数を動く変形パラメータaが1や2より大きいかどうかで作用素の解析的な性質が変わってしまうことを意味する。
(k,a)-generalized Laguerre semigroupの積分核は変形I-Bessel関数やGegenbauer多項式を用いた無限和で与えられているが、変形I-Bessel関数のSchlafliによる積分表示や二項展開を用いることで積分表示を得ることができる。証明では、この被積分関数の特異点での挙動を調べて一様な評価を得る。投稿用の論文は執筆中である。

Research Progress Status

令和4年度が最終年度であるため、記入しない。

Strategy for Future Research Activity

令和4年度が最終年度であるため、記入しない。

Report

(3 results)
  • 2022 Annual Research Report
  • 2021 Annual Research Report
  • 2020 Annual Research Report
  • Research Products

    (21 results)

All 2023 2022 2021

All Journal Article (5 results) (of which Peer Reviewed: 1 results) Presentation (16 results) (of which Int'l Joint Research: 1 results,  Invited: 7 results)

  • [Journal Article] Classification of irreducible (g, k)-modules associated to the ideals of minimal nilpotent orbits for type A groups2022

    • Author(s)
      田森宥好
    • Journal Title

      RIMS Kokyuroku

      Volume: 2234

    • Related Report
      2022 Annual Research Report
  • [Journal Article] Epsilon dichotomy for linear models: the Archimedean case2022

    • Author(s)
      M. Suzuki and H. Tamori
    • Journal Title

      arXiv.2207.00743

      Volume: -

    • Related Report
      2021 Annual Research Report
  • [Journal Article] On the existence of a nonzero linear period2021

    • Author(s)
      田森宥好
    • Journal Title

      2021年度表現論シンポジウム講演集

      Volume: -

    • Related Report
      2021 Annual Research Report
  • [Journal Article] Classification of irreducible (g,k)-modules associated to the ideals of minimal nilpotent orbits for simple Lie groups of type A2021

    • Author(s)
      H. Tamori
    • Journal Title

      International Mathematical Research Notices

      Volume: - Issue: 5 Pages: 3814-3847

    • DOI

      10.1093/imrn/rnab356

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On the existence of a nonzero linear period2021

    • Author(s)
      田森宥好
    • Journal Title

      表現論シンポジウム講演集

      Volume: -

    • Related Report
      2020 Annual Research Report
  • [Presentation] On the existence of a nonzero twisted linear period2023

    • Author(s)
      田森宥好
    • Organizer
      第2回仙台保形形式小集会「π∞」
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] Strichartz estimates for the (k,a)-generalized Laguerre operators2023

    • Author(s)
      田森宥好
    • Organizer
      Langlands and Harmonic Analysis (第6回)
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] Classification of irreducible (g, k)-modules associated to the ideals of minimal nilpotent orbits for type A groups2022

    • Author(s)
      田森宥好
    • Organizer
      Representation Theory and Various issues on related topics
    • Related Report
      2022 Annual Research Report
  • [Presentation] On the existence and irreducibility of certain series of representations (Kostant) の紹介2022

    • Author(s)
      田森宥好
    • Organizer
      Workshop on “Actions of Reductive Groups and Global Analysis”
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] On the existence of a nonzero linear period2022

    • Author(s)
      田森宥好
    • Organizer
      日本数学会2022年度秋季総合分科会
    • Related Report
      2022 Annual Research Report
  • [Presentation] On a long exact sequence of the Schwartz homology2022

    • Author(s)
      田森宥好
    • Organizer
      Lie Groups and Representation Theory Seminar, The University of Tokyo
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] On the existence of a nonzero linear period2021

    • Author(s)
      田森宥好
    • Organizer
      Lie Groups and Representation Theory Seminar, The University of Tokyo
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] Bruhat filtrations and Whittaker vectors for real groups (Casselman-Hecht-Milicic’00)の紹介2021

    • Author(s)
      田森宥好
    • Organizer
      Workshop on “Actions of Reductive Groups and Global Analysis”
    • Related Report
      2021 Annual Research Report
  • [Presentation] Classification of type A analogues of minimal representations2021

    • Author(s)
      H. Tamori
    • Organizer
      Seminar, Soochow University
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Classification of type A analogues of minimal representations2021

    • Author(s)
      田森宥好
    • Organizer
      Lie Groups and Representation Theory Seminar, The University of Tokyo
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] On the existence of a nonzero linear period2021

    • Author(s)
      田森宥好
    • Organizer
      2021 年度表現論シ ンポジウム
    • Related Report
      2021 Annual Research Report
  • [Presentation] On the existence of a nonzero linear period2021

    • Author(s)
      田森宥好
    • Organizer
      Lie groups and Representation Theory Seminar (The University of Tokyo)
    • Related Report
      2020 Annual Research Report
  • [Presentation] Bruhat filtrations and Whittaker vectors for real group (Casselman-Heckt-Milicic'00)の紹介2021

    • Author(s)
      田森宥好
    • Organizer
      Workshop on "Actions of Reductive Groups and Global Analysis"
    • Related Report
      2020 Annual Research Report
  • [Presentation] Classification of type A analogues of minimal representations2021

    • Author(s)
      H. Tamori
    • Organizer
      Seminar (Soochow University)
    • Related Report
      2020 Annual Research Report
  • [Presentation] Classification of type A analogues of minimal representations2021

    • Author(s)
      田森宥好
    • Organizer
      Lie groups and Representation Theory Seminar (The University of Tokyo)
    • Related Report
      2020 Annual Research Report
  • [Presentation] On the existence of a nonzero linear period2021

    • Author(s)
      田森宥好
    • Organizer
      2021年度表現論シンポジウム
    • Related Report
      2020 Annual Research Report

URL: 

Published: 2020-07-07   Modified: 2024-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi