The development of high-performance n-type organic semiconductors with herringbone molecular assembly
Project/Area Number |
20J12608
|
Research Category |
Grant-in-Aid for JSPS Fellows
|
Allocation Type | Single-year Grants |
Section | 国内 |
Review Section |
Basic Section 33010:Structural organic chemistry and physical organic chemistry-related
|
Research Institution | The University of Tokyo |
Principal Investigator |
YU CRAIG PEIQI 東京大学, 新領域創成科学研究科, 特別研究員(DC2)
|
Project Period (FY) |
2020-04-24 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥2,100,000 (Direct Cost: ¥2,100,000)
Fiscal Year 2021: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2020: ¥1,100,000 (Direct Cost: ¥1,100,000)
|
Keywords | organic semiconductors / molecular design / π-electron systems / field-effect transistors / n-type |
Outline of Research at the Start |
Organic semiconductors (OSCs) are promising materials for low-cost, and flexible electronics. To construct logic-circuits for high-end electronics, both p- and n-type OSCs are required. To develop high-performance n-type OSCs, the applicant proposes the following molecular features: 1) achieve two-dimensional molecular assemblies in the crystal structures; 2) fine -tuning of intermolecular orbital overlaps and suppression of molecular motions; 3) achieve balanced effective masses; 4) obtain air-stable n-type semiconductor performances higher than 10 cm2 V/s.
|
Outline of Annual Research Achievements |
In this fiscal year, my research focused on the molecular designs for effective solid-state packing structures with strong and balanced intermolecular orbital overlaps and resilience towards dynamic disorders in high-performance n-type organic semiconductors. The electron-deficient benzo[de]isoquinolino[1,8-gh]quinolinetetracarboxylic diimide (BQQDI) π-electron system is continuously used as the molecular design template and various substituents are incorporated to fine-tune the molecular assembly. With the use of bulky substituents on the BQQDI π-electron system, we achieved a two-dimensional isotropic packing motif and an isotropic charge transport for electron carriers. We demonstrated for the first time that the isotropic electron-carrier transport provides resilience to dynamic disorders and it is extremely beneficial for achieving high electron-carrier mobilities. We experimentally confirmed the isotropic charge transport and obtained an excellent air-stable electron mobility up to 3.0 cm2/Vs using four-probe field-effect transistors. In addition to this study, we also developed a synthetically and functionally versatile electron-deficient benzo[de]isoquinolino[1,8-gh]quinoline Diamide π-electron system that can access a wide range of orbital energies for various organic electronic applications including organic field-effect transistors and organic photovoltaics.
|
Research Progress Status |
令和3年度が最終年度であるため、記入しない。
|
Strategy for Future Research Activity |
令和3年度が最終年度であるため、記入しない。
|
Report
(2 results)
Research Products
(12 results)