• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

時変動グラフ上の信号情報処理:大規模時空間センシングデータのスパース表現

Research Project

Project/Area Number 20J13647
Research Category

Grant-in-Aid for JSPS Fellows

Allocation TypeSingle-year Grants
Section国内
Review Section Basic Section 61010:Perceptual information processing-related
Research InstitutionTokyo University of Agriculture and Technology

Principal Investigator

山田 宏樹  東京農工大学, 工学府, 特別研究員(DC2)

Project Period (FY) 2020-04-24 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥2,100,000 (Direct Cost: ¥2,100,000)
Fiscal Year 2021: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2020: ¥1,100,000 (Direct Cost: ¥1,100,000)
Keywordsグラフ学習 / グラフ信号処理 / サンプリング
Outline of Research at the Start

従来の周波数変換技術に基づくスパース表現は、データの圧縮・解析における重要なツールであるが、信号が不均一に分布する時空間データを扱うことは困難であった。本研究では、時間的に位置・関係性が変化するセンサから計測された大規模な時空間データを、信号の時変動構造を考慮しスパース表現する技術の開発を目指す。さらに、そのスパース表現を利用し、大規模時空間データの実問題への応用に取り組む。

Outline of Annual Research Achievements

本年度はグラフ学習手法とグラフのエッジサンプリング手法に取り組んだ.研究成果の概要を以下にまとめる.
1. 多重解像度グラフ学習: 時変グラフ学習は多変量時系列データから時間変化するグラフを学習する手法である.時変グラフ学習の従来法は,時変グラフの先見情報を活用することで精度良くグラフを推定する.しかし,これらの手法はグラフに対する先見情報がない場合には対応できない.本年度は時変グラフの時間多重解像度表現を利用した時変グラフ学習手法に取り組んだ.結果として,先見情報を利用することなく,従来手法と同等あるいは精度よくグラフを推定することが可能となった.本研究成果はIEEE Access誌に掲載された.
2. グラフ学習情報量規準: グラフ学習手法を実問題に応用する多くの場合,真のグラフに対する情報は未知であるため,グラフ学習のハイパーパラメータを選択は経験によるものであった.本年度はグラフ学習のモデル選択手法に取り組んだ.グラフ学習の問題を生成モデルとして再定式化し,モデルエビデンスを計算することで,グラフ学習においてモデル選択を可能にした.本研究成果はICASSP2022に採択が決定している.
3. 辺の平滑性に基づくグラフのエッジサンプリング: 不要なグラフの辺を削除する問題,いわゆるグラフのエッジサンプリングは機械学習,信号処理分野で重要な課題である.本研究はグラフをライングラフに変換し,平滑性に基づくサンプリング手法を適用することで,辺の平滑性を保ったままエッジサンプリングを行うことに成功した.この研究成果はICASSP2022に採択が決定している.

Research Progress Status

令和3年度が最終年度であるため、記入しない。

Strategy for Future Research Activity

令和3年度が最終年度であるため、記入しない。

Report

(2 results)
  • 2021 Annual Research Report
  • 2020 Annual Research Report
  • Research Products

    (7 results)

All 2022 2021 2020

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (6 results) (of which Int'l Joint Research: 6 results)

  • [Journal Article] Temporal Multiresolution Graph Learning2021

    • Author(s)
      Yamada Koki、Tanaka Yuichi
    • Journal Title

      IEEE Access

      Volume: 9 Pages: 143734-143745

    • DOI

      10.1109/access.2021.3120994

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] Graph Learning Information criterion2022

    • Author(s)
      Koki Yamada, Yuichi Tanaka
    • Organizer
      IEEE International Conference on Acoustics, Speech and Signal Processing
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Edge Sampling of Graph Based on Edge Smoothness2022

    • Author(s)
      K. Yanagiya, Koki Yamada, Y. Katsuhara, T. Takatani, Y. Tanaka
    • Organizer
      IEEE International Conference on Acoustics, Speech and Signal Processing
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Node Clustering of Time-varying Graphs Based on Temporal Label Smoothness2021

    • Author(s)
      K. Fukumoto, Koki Yamada, Yuichi Tanaka
    • Organizer
      Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC 2021)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Design of Graph Signal Sampling Matrices for Arbitrary Signal Subspaces2021

    • Author(s)
      Junya Hara, Koki Yamada, Shunsuke Ono, Yuichi Tanaka
    • Organizer
      2021 IEEE International Conference on Acoustics, Speech and Signal Processing
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Graph Signal Denoising Using Nested-Structured Deep Algorithm Unrolling2021

    • Author(s)
      Masatoshi Nagahama, Koki Yamada, Yuichi Tanaka, Stanley Chan, Yonina C. Eldar
    • Organizer
      2021 IEEE International Conference on Acoustics, Speech and Signal Processing
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Learning Graphs with Multiple Temporal Resolutions2020

    • Author(s)
      Koki Yamada, Yuichi Tanaka
    • Organizer
      APSIPA Annual Summit and Conference 2020
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research

URL: 

Published: 2020-07-07   Modified: 2024-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi