Project/Area Number |
20J20055
|
Research Category |
Grant-in-Aid for JSPS Fellows
|
Allocation Type | Single-year Grants |
Section | 国内 |
Review Section |
Basic Section 11010:Algebra-related
|
Research Institution | Osaka University |
Principal Investigator |
赤池 広都 大阪大学, 理学研究科, 特別研究員(DC1)
|
Project Period (FY) |
2020-04-24 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥2,500,000 (Direct Cost: ¥2,500,000)
Fiscal Year 2022: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2021: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2020: ¥900,000 (Direct Cost: ¥900,000)
|
Keywords | 代数ファイバー空間 / 相対不変量 / 分岐被覆 / スロープ / del Pezzo曲面 / Fano多様体 / K安定性 / デルタ不変量 / ファイバー曲面 / 自己同型群 / 代数曲面 / ファイバー空間 |
Outline of Research at the Start |
代数多様体は,多項式系の零点として定められる図形である.近年,高次元代数多様体の研究は盛んにおこなわれており,理論は目覚ましく発展している. その中でも筆者は,2次元,3次元代数多様体の地誌学的研究に興味を持っている.地誌学的研究とは,代数多様体の世界を数値不変量により地図で捉え,それらが存在する領域を見出し,幾何学的特徴と存在領域の関係を調べる研究である.筆者は,有理曲面束の巡回被覆構造をもつ3次元代数多様体の存在領域を見出すことを目標としている.
|
Outline of Annual Research Achievements |
代数ファイバー空間の地誌学的研究の観点から、巡回被覆構造に関する仮定をした3次元代数ファイバー空間の研究を行った。具体的には、被覆次数がスロープと呼ばれる相対数値不変量に与える影響を研究していた。目標を達成する上で、次の大きな2つのステップがあった。1つ目は、相対標準因子の自己交点数を、被覆次数及び、ホッジ束のHarder-Narasimhanフィルトレーション由来の諸指数からなる式により評価すること。2つ目は、相対標準因子の自己交点数を、ホッジ束のHarder-Narasimhanフィルトレーション由来の諸指数のみからなる式により評価すること。 1つ目のステップは、昨年度に達成していた。本年度の研究により、2つ目のステップをいくつかの仮定の下で達成できた。議論の中で、bi-relative dualizing sheafの順像層に関するHareder-Narasimhanフィルトレーション、ファイバーの標準因子に関する2倍写像、そして曲面に関するClifford型の定理を用いている。これらを用いたことで、より良い形で、相対標準因子の自己交点数の評価が得られた。 本年度は、さらにもう一つの新しいテーマに取り組んだ。反標準次数が5以上のweak del Pezzo曲面の局所デルタ不変量を決定した。(局所)デルタ不変量は、Fano多様体のK安定性を調べる上で重要な量である。weak del Pezzo曲面上の局所デルタ不変量を決定する上で、曲面上の素因子の適切な選択が重要となるプロセスがある。素因子を一つ一つ選び、膨大な計算をして、weak del Pezzo曲面の局所デルタ不変量を決定できた。
|
Research Progress Status |
令和4年度が最終年度であるため、記入しない。
|
Strategy for Future Research Activity |
令和4年度が最終年度であるため、記入しない。
|
Report
(3 results)
Research Products
(5 results)