Project/Area Number |
20J21362
|
Research Category |
Grant-in-Aid for JSPS Fellows
|
Allocation Type | Single-year Grants |
Section | 国内 |
Review Section |
Basic Section 61040:Soft computing-related
|
Research Institution | The University of Tokyo |
Principal Investigator |
中村 絢斗 東京大学, 情報理工学系研究科, 特別研究員(DC1)
|
Project Period (FY) |
2020-04-24 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥3,400,000 (Direct Cost: ¥3,400,000)
Fiscal Year 2022: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2021: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2020: ¥1,200,000 (Direct Cost: ¥1,200,000)
|
Keywords | 化学走性 / 細胞性粘菌 / 推定効率 / フィルタリング方程式 / 細胞形状 / 相互情報量最大化 |
Outline of Research at the Start |
本研究では細胞性粘菌の化学走性を例にして、生物が外界を認識する上で行動の果たす役割を最適性の観点から扱う。細胞性粘菌は仮足により移動すると同時に、移動方向以外へも仮足を複雑なパターンで形成する。仮足形成を担う細胞内機構に関して多く研究されているが、生じる形成パターンの機能的意義に関しては不明点が多い。ここでは仮足形成が、外界の濃度勾配の効率的な探索に寄与する可能性に着目する。探索の最適性を扱うバンディットの枠組みを援用して効率的な形成パターンを数理モデル化し、細胞内機構で実現しうる分散的なアルゴリズムを構築する。実験的知見と比較し、仮足形成とその機構が探索の機能上良い設計でありうるか議論する。
|
Outline of Annual Research Achievements |
本年度は、生物が推定効率を改善する可能性を定量的に調べるために、漸近的な設定において解析解の導出を試みた。推定効率を表す様々な指標が事後分布の汎関数として表せるため、事後分布の時間発展を表すフィルタリング方程式の定常解に着目することで、推定効率の定常値を求めることを目指した。生物のセンシングの文脈において、フィルタリング方程式の定常解は注目され始めているが、その導出方法は問題毎に個別的であり形状制御等の複雑な要素を取り入れる上では見通しの悪いところがある。そこで必要な仮定や問題間で共通する性質等がなるべく明確になるように整理することを試みた。 具体的にはフィルタリング方程式に現れるポアソンノイズをKramers-Moyal展開に基づいて拡散近似し、系全体の確率分布を周辺化することで事後分布の確率分布に整理して説明できることを見出した。これらの工夫に基づいて1次元上の化学走性の簡単な場合における定常誤差を導出できることを見出し、現在2次元上の化学走性の場合への適用を進めている。2次元上の化学走性モデルに適用する際の困難は、1次元上のモデルでは有限状態で表していた方向変数が実数値変数となるため、その上の関数として捉えられる事後分布が有限次元のベクトルでは表せなくなることである。既存研究においては事後分布の振る舞いを小数の変数に縮約して説明することで定常解を求めているが、その数理的な正当化は問題に個別の仕方であるかなされていなかった。現在、フィルタリング方程式の適切な変数変換と級数展開を組み合わせることで、事後分布の縮約を一般化しうる形で正当化できる可能性を見出しており、その結果に基づく定常解の導出を進めている。
|
Research Progress Status |
令和4年度が最終年度であるため、記入しない。
|
Strategy for Future Research Activity |
令和4年度が最終年度であるため、記入しない。
|