• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Identification and Estimation of Regression Models with a Misclassified and Endogenous Binary Regressor

Research Project

Project/Area Number 20K01586
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 07030:Economic statistics-related
Research InstitutionThe University of Tokyo

Principal Investigator

Shimotsu Katsumi  東京大学, 大学院経済学研究科(経済学部), 教授 (50547510)

Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2021: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2020: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords識別 / 内生的二値説明変数 / 操作変数 / 共変量 / 計量経済学 / 内生性
Outline of Research at the Start

This research project will achieve two main goals. First, we show that the regression function is nonparametrically identified if one binary instrument variable and one binary covariate are present. Second, we develop a nonparametric estimation method of the identified model.

Outline of Final Research Achievements

This study investigates the identification problem in econometric models in which endogenous binary explanatory variables are misclassified. In empirical studies in econometrics, the misclassification and recording of binary explanatory variables is often observed, for example, in self-reported participation in job training. Existing studies have identified this model with an instrumental variable that satisfies two exclusion restrictions: exogeneity and independence from measurement error of the binary explanatory variable. In empirical studies, however, it is not easy to find instrumental variables that satisfy these exclusion restrictions. This study proves that econometric models in which endogenous binary explanatory variables are misclassified can be identified nonparametrically using a single binary instrumental variable and a single binary covariate.

Academic Significance and Societal Importance of the Research Achievements

本研究によって得られた成果は、理論的にも実証的な応用にも有用である。既存研究においては、内生的な二値説明変数が誤分類されている計量経済モデルを識別するためには、回帰式と誤分類誤差の両方から除外される操作変数を見つけることが必要であった。本研究の結果を適用すれば、このモデルの識別のためには、操作変数は回帰式から除外されていれば十分であり、そして回帰式に含まれる多くの共変量の中から条件をみたす共変量を1つ選べば良い。このため、実証研究におけるこのモデルの識別が著しく容易となる。

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (6 results)

All 2023 2022 2021

All Journal Article (1 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (5 results) (of which Int'l Joint Research: 3 results,  Invited: 1 results)

  • [Journal Article] Identification of Regression Models with a Misclassified and Endogenous Binary Regressor2022

    • Author(s)
      Hiroyuki Kasahara and Katsumi Shimotsu
    • Journal Title

      Econometric Theory

      Volume: 38 Issue: 6 Pages: 1117-1139

    • DOI

      10.1017/s0266466621000451

    • Related Report
      2022 Research-status Report 2021 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] Testing for unobserved heterogeneity in censored duration models: EM approach2023

    • Author(s)
      Katsumi Shimotsu
    • Organizer
      6th International Conference on Econometrics and Statistics (EcoSta 2023)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Testing for unobserved heterogeneity in censored duration models: EM approach2023

    • Author(s)
      Katsumi Shimotsu
    • Organizer
      2023 Asian Meeting of the Econometric Society in East and Southeast Asia
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Testing the Order of Multivariate Normal Mixture Models2022

    • Author(s)
      Katsumi Shimotsu
    • Organizer
      TRANSDISCIPLINARY ECONOMETRICS & DATA SCIENCE SEMINAR
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Identification of Regression Models with a Misclassified and Endogenous Binary Regressor2021

    • Author(s)
      下津克己
    • Organizer
      日本経済学会2021年度秋季大会
    • Related Report
      2021 Research-status Report
  • [Presentation] Testing the Order of Multivariate Normal Mixture Models2021

    • Author(s)
      下津克己
    • Organizer
      2021年度関西計量経済学研究会
    • Related Report
      2021 Research-status Report

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi