リスク計測方法見直しに伴う諸問題へのノンパラメトリックな統計手法の応用
Project/Area Number |
20K01765
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 07060:Money and finance-related
|
Research Institution | Saitama University |
Principal Investigator |
丸茂 幸平 埼玉大学, 人文社会科学研究科, 准教授 (90596959)
|
Project Period (FY) |
2020-04-01 – 2025-03-31
|
Project Status |
Granted (Fiscal Year 2022)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2024: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2023: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | Risk measure / Expectile regression / Quantile regression / ノンパラメトリックな統計手法 / マイナス金利 / エルミート多項式系 / ストレス時のリスク計測 |
Outline of Research at the Start |
本研究は,ノンパラメトリックな統計手法の一つである,エルミート展開を使った分布関数の近似法を,近年の金融リスク管理に関連する問題へ応用することを企図する.まず,実務への応用に足るだけの近似精度を得るために,エルミート展開の数学的な性質を調査する.その後,近年金融リスク管理の分野で問題となっている以下の3つの問題(1)金融危機時のリスク指標算出,(2)期待ショートフォールに対するバック・テスト方法の開発,(3)マイナス金利下でのイールド・カーブ・モデルの開発と,それを使ったリスク計測,への応用を考える.
|
Outline of Annual Research Achievements |
現在金融リスク計量のための指標は Value at Risk (VaR) が主流といえるが,Expected Shortfall (ES) など,新しい指標も実用化がすすめられている.こうした中,実用化の例は聞かないものの,一部で研究がおこなわれている Expectile に関して,オーストラリア連邦 Royal Melbourne Institute of Technology の Steven Li 教授とともに調査を行った.Expectile は VaR や ES よりも裾部分のリスクにより鋭敏に反応することなどから金融リスク指標として注目をされている. Expectile は,資産価格を引数に持つある評価関数の期待値を最小化するパラメータの値として定義されるものである(Kuan et. al. 2009 など).この Expectile に関して,ある市場のリスクを,ほかの市場の過去の変動を説明変数とする Expectile 回帰モデルを開発し,市場データからリスクの伝播を推定するアルゴリズムを実装した. これを利用して日本とオーストラリアの株式市場の間にリスクの伝播の可能性があることや,米国市場や中国市場との関連性などを見出した.また,Expectile と ES の間の数学的な関係を利用して,Expectileの推定値からESを推定するアルゴリズムを実装した.推定値は,In-sample, out-of-sample ともに市場の変動をうまく捉えれらており,実用への可能性をうかがわせるものであった. これらの結果を論文 Downside risk in Australian and Japanese stock markets: evidence based on the expectile regression にまとめ,投稿を準備している.
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
モデルの構築,アルゴリズムの実装,データの取得などは完了し,また,これらを利用した数値計算もおおむね終了している.現在,論文にまとめている状態である.
|
Strategy for Future Research Activity |
今後は,ここまでの結果を論文にまとめる作業を行う.また,その先では,高次モーメントの情報などを取り入れて,Expectile を利用したリスク計測手法のさらなる精緻化を図る.また,Expectile の解釈に関する理論的な側面をさらに検討し,場合によっては新たなリスク指標の開発につなげる.
|
Report
(3 results)
Research Products
(1 results)