• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of algebraic methods for Morita dual of finite tensor categories and related algebraic structures

Research Project

Project/Area Number 20K03520
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionShibaura Institute of Technology

Principal Investigator

Shimizu Kenichi  芝浦工業大学, システム理工学部, 准教授 (70624302)

Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2023: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywordsホップ代数 / テンソル圏
Outline of Research at the Start

テンソル圏は数学および数理物理学の様々な分野で用いられている代数的な枠組みである。低次元トポロジーや共形場理論を動機とする“有限テンソル圏”に関する先行研究は,半単純性という条件の下で行われているものが多い。研究代表者は,これまでホップ代数(これは対称性を記述する数学的概念である“群”のある種の一般化である)について研究を行ってきた。本研究では主に“非半単純”な設定の下で,これまでにホップ代数の研究において培われてきたアプローチを用いて,有限テンソル圏を取り扱う代数的手法を開発することを目的としている。

Outline of Final Research Achievements

As joint research with Taiki Shibata (Okayama University of Science), I established basic theory of Nakayama functors for coalgebras. We introduced the Nakayama functor for a coalgebra C, which is not necessarily finite-dimensional, as an endofunctor on the category of right comodules over C and showed that it is expressed by coends as in the finite-dimensional case. We also gave relation between properties of the Nakayama functor and those of the coalgebra (including semiperfectness, quasi-co-Frobenius property, and symmetric co-Frobenius property). In addition, we gave some applications to Frobenius tensor categories. I also studied Nakayama functors and Morita theory of finite tensor categories, and obtained some formulas of the Nakayama functor and characterizations of quasi-Frobenius algebras in finite tensor categories.

Academic Significance and Societal Importance of the Research Achievements

本研究課題では中山関手とテンソル圏の森田理論について研究し,テンソル圏に関する様々な基礎的な結果が得られた。テンソル圏の理論は,代数学的な見地からのみならず,低次元トポロジー,作用素環論,数理物理学などの観点からも重要である。これらの分野におけるテンソル圏の研究はフュージョン圏(有限かつ半単純なテンソル圏)に対するものが多かったが,本研究では半単純の場合に知られている多くの結果を非半単純な場合に一般化しており,ここに本研究の特色がある。近年では,フュージョン圏の理論が物質のトポロジカル相と関連して盛んに研究されており,将来的には,そのような方向性からの応用も期待される。

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (20 results)

All 2023 2022 2021 2020 Other

All Journal Article (6 results) (of which Peer Reviewed: 6 results,  Open Access: 4 results) Presentation (12 results) (of which Int'l Joint Research: 5 results,  Invited: 3 results) Remarks (2 results)

  • [Journal Article] Ribbon structures of the Drinfeld center of a finite tensor category2023

    • Author(s)
      Shimizu Kenichi
    • Journal Title

      Kodai Mathematical Journal

      Volume: 46 Issue: 1 Pages: 75-114

    • DOI

      10.2996/kmj46106

    • ISSN
      0386-5991, 1881-5472
    • Year and Date
      2023-03-15
    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Relative Serre functor for comodule algebras2023

    • Author(s)
      Shimizu Kenichi
    • Journal Title

      Journal of Algebra

      Volume: 634 Pages: 237-305

    • DOI

      10.1016/j.jalgebra.2023.07.015

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Nakayama functors for coalgebras and their applications to Frobenius tensor categories2023

    • Author(s)
      Shibata Taiki、Shimizu Kenichi
    • Journal Title

      Advances in Mathematics

      Volume: 419 Pages: 108960-108960

    • DOI

      10.1016/j.aim.2023.108960

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Pivotal structures of the Drinfeld center of a finite tensor category2023

    • Author(s)
      Shimizu Kenichi
    • Journal Title

      Journal of Pure and Applied Algebra

      Volume: 227 Issue: 7 Pages: 107321-107321

    • DOI

      10.1016/j.jpaa.2023.107321

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Modified Traces and the Nakayama Functor2021

    • Author(s)
      Shibata Taiki、Shimizu Kenichi
    • Journal Title

      Algebras and Representation Theory

      Volume: - Issue: 2 Pages: 513-551

    • DOI

      10.1007/s10468-021-10102-5

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Categorical aspects of cointegrals on quasi-Hopf algebras2020

    • Author(s)
      Shibata Taiki、Shimizu Kenichi
    • Journal Title

      Journal of Algebra

      Volume: 564 Pages: 353-411

    • DOI

      10.1016/j.jalgebra.2020.08.012

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Applications of the Nakayama functor to tensor categories2023

    • Author(s)
      Kenichi Shimizu
    • Organizer
      10th Congress of Romanian Mathematicians
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] The Nakayama functor and the integral theory for Hopf algebras2023

    • Author(s)
      Kenichi Shimizu
    • Organizer
      Hopf Days in Brussels 2023
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Nakayama functor for coalgebras2022

    • Author(s)
      Kenichi Shimizu
    • Organizer
      International Workshop on Hopf Algebras
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 非半単純モジュラーテンソル圏2022

    • Author(s)
      清水健一
    • Organizer
      代数学シンポジウム
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] 双対テンソル圏の中山関手の公式2022

    • Author(s)
      清水健一
    • Organizer
      日本数学会秋季総合分科会
    • Related Report
      2022 Research-status Report
  • [Presentation] 二重ボゾン化について2022

    • Author(s)
      清水健一
    • Organizer
      Toyama Workshop on Quantum Groups and Related Topics
    • Related Report
      2022 Research-status Report
  • [Presentation] Nakayama functors for Frobenius tensor categories2022

    • Author(s)
      Kenichi Shimizu
    • Organizer
      Conference on Algebraic Representation Theory
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] FRT type construction of Hopf algebroids2021

    • Author(s)
      Kenichi Shimizu
    • Organizer
      Advances in Hopf Algebroids
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] Modified traces and the Nakayama functor2021

    • Author(s)
      Kenichi Shimizu
    • Organizer
      OCAMI代数セミナー
    • Related Report
      2021 Research-status Report
  • [Presentation] Remarks on the categorical Radford S4 formula2021

    • Author(s)
      Kenichi Shimizu
    • Organizer
      第36回リー代数サマーセミナー
    • Related Report
      2021 Research-status Report
  • [Presentation] Nakayama functors for Frobenius tensor categories2021

    • Author(s)
      Kenichi Shimizu
    • Organizer
      RIMS表現論セミナー
    • Related Report
      2021 Research-status Report
  • [Presentation] 中山関手とその応用 I, II2021

    • Author(s)
      Kenichi Shimizu
    • Organizer
      Mini workshop on "Lie algebras, Hopf algebras and related topics"
    • Related Report
      2021 Research-status Report
  • [Remarks] Kenichi Shimizu

    • URL

      https://sites.google.com/site/shimikenx

    • Related Report
      2022 Research-status Report
  • [Remarks] Kenichi Shimizu

    • URL

      https://sites.google.com/site/shimikenx/

    • Related Report
      2021 Research-status Report

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi