• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Mathematics on Calabi-Yau manifolds and related topics

Research Project

Project/Area Number 20K03530
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionThe University of Tokyo

Principal Investigator

Katsura Toshiyuki  東京大学, 大学院数理科学研究科, 特任教授 (40108444)

Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2020: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
KeywordsK3曲面 / エンリケス曲面 / コーブル曲面 / アーベル曲面 / ヤコビ多様体 / カラビ・ヤウ多様体 / リシュロー同種写像 / 正標数 / Coble曲面 / Kummer曲面 / 自己同型群 / Richelot isogeny / quadratic line complex / 代数曲線 / Jacobi多様体 / Grassmann多様体 / 準楕円曲面 / Enriques曲面 / 有理曲面
Outline of Research at the Start

代数曲面の研究は20世紀初頭のイタリア学派の研究を嚆矢として、複素数体上の場合は小平邦彦による詳細で厳密な理論により一定の決着を見た。正標数の代数曲面は、その後、BombieriとMumfordによって研究がなされ、その分類理論は1977年に完成した。本研究の目的はその流れを汲み、正標数において、カラビ・ヤウ多様体を中心とする代数多様体の代数幾何学的・数論的な構造を解明することである。アーベル多様体、K3曲面、エンリケス曲面などのモジュライ空間、代数的サイクル、自己同型群の構造などの解明を目指して研究を行う。当面は標数2の有限自己同型群を有するエンリケス曲面のモジュライ数の決定が目標となる。

Outline of Final Research Achievements

In the early 19th Century, Riemann introduced the notion of Riemann surface and around 1900 the Italian school developed the theory of classification of algebraic surfaces. In 1960's Kodaira established the rigorous theory of classification of algebraic surfaces over the complex number field. Then, Bombieri-Mumford constructed the theory of classification of algebraic surfaces over the algebraically closed field of positive characteristic. In our research, based on the theory of algebraic surface, we classified the Coble surfaces with finite automorphism group by using the configuration of nodal curves and determined the structure of finite automorphism groups, the number of moduli and the number of boundary components. We also investigated the structure of Richelot isogenies of Jacobian varieties of algebraic curves of genus 2 and 3.

Academic Significance and Societal Importance of the Research Achievements

代数幾何学の発展の流れに沿った研究であり、エンリケス曲面という代数曲面の分類理論上重要な位置を占める曲面の退化として現れるコーブル曲面に対して、標数2の代数的閉体上、自己同型群が有限の場合にはどのようなものが存在しうるかということに対する解答を与えるとともに、有限自己同型群の構造、各類のモジュライ数や境界の成分の数を決定した。また、種数2、3の代数曲線のヤコビ多様体のリシュロー同種写像の構造に関する結果を得たが、これは情報理論で現在活発に研究されている耐量子計算機暗号の理論と関係している。

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (16 results)

All 2023 2022 2021 2020 Other

All Int'l Joint Research (2 results) Journal Article (5 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 5 results,  Open Access: 2 results) Presentation (7 results) (of which Int'l Joint Research: 1 results,  Invited: 7 results) Book (1 results) Remarks (1 results)

  • [Int'l Joint Research] Leibniz University Honnover(ドイツ)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] Leibniz University Hannover(ドイツ)

    • Related Report
      2021 Research-status Report
  • [Journal Article] Coble surfaces in characteristic two2023

    • Author(s)
      Toshiyuki Katsura and Shigeyuki Kondo
    • Journal Title

      Journal of the Mathematical Society of Japan

      Volume: 75 Issue: 4 Pages: 1287-1337

    • DOI

      10.2969/jmsj/87568756

    • ISSN
      0025-5645, 1881-1167, 1881-2333
    • Related Report
      2023 Annual Research Report 2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] K3 surfaces with 9 cusps in characteristic p2021

    • Author(s)
      Toshiyuki Katsura and Matthias Schuett
    • Journal Title

      J. Pure and Applied Algebra

      Volume: 225 Issue: 4 Pages: 106558-106558

    • DOI

      10.1016/j.jpaa.2020.106558

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] On the multicanonical systems of quasi-elliptic surfaces2021

    • Author(s)
      KATSURA Toshiyuki、SAITO Natsuo
    • Journal Title

      Journal of the Mathematical Society of Japan

      Volume: 73 Issue: 4 Pages: 1253-1261

    • DOI

      10.2969/jmsj/85058505

    • NAID

      130008106927

    • ISSN
      0025-5645, 1881-1167, 1881-2333
    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Decomposed Richelot isogenies of Jacobian varieties of curves of genus 32021

    • Author(s)
      T. Katsura
    • Journal Title

      J. Algebra

      Volume: 588 Pages: 129-147

    • DOI

      10.1016/j.jalgebra.2021.08.020

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Counting Richelot isogenies between superspecial abelian surfaces2020

    • Author(s)
      Toshiyuki Katsura and Katsuyuki Takashima
    • Journal Title

      “Proceedings of the Fourteenth Algorithmic Number Theory Symposium (ANTS-XIV)”(edited by Steven Galbraith)

      Volume: Open Book Series 4 Issue: 1 Pages: 283-300

    • DOI

      10.2140/obs.2020.4.283

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] 正標数のK3曲面2023

    • Author(s)
      桂 利行
    • Organizer
      Encounter with Mathematics, 中央大学
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] On the classification of Enriques surfaces with finite automorphism group2023

    • Author(s)
      桂 利行
    • Organizer
      Aspects of Algebraic Geometry, Cetraro, Italy,
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] On the moduli of quasi-elliptic Enriques surfaces in characteristic 22023

    • Author(s)
      桂 利行
    • Organizer
      K3 Surfaces, Enriques surfaces, and Related Topics研究集会、名古屋大学
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Classification of Coble surfaces with finite automorphism group in characteristic 22022

    • Author(s)
      桂 利行
    • Organizer
      第26回代数曲面ワークショップat常三島、徳島大学
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] 正標数の代数幾何2022

    • Author(s)
      桂 利行
    • Organizer
      第20回岡シンポジウム、奈良女子大学
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Decomposed Richelot isogenies of curves of genus 32021

    • Author(s)
      桂 利行
    • Organizer
      同種写像理論とその暗号への応用(九州大学マス・フォア・インダストリ研究所(オンライン))
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Counting Richelot isogenies of supersingualr curves of genus 22020

    • Author(s)
      Toshiyuki Katsura
    • Organizer
      Seminar of Algebraic Geometry in East Asia (Zoom)
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Book] 楕円曲面2022

    • Author(s)
      桂 利行
    • Total Pages
      244
    • Publisher
      岩波書店
    • ISBN
      9784000298308
    • Related Report
      2022 Research-status Report
  • [Remarks] 研究成果報告集(東京大学大学院数理科学研究科)

    • URL

      https://www.ms.u-tokyo.ac.jp/activity/annualreport.html

    • Related Report
      2020 Research-status Report

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi