• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Algebraic and analytic study on exponential equations related to Fermat's equation

Research Project

Project/Area Number 20K03553
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionGunma University

Principal Investigator

Miyazaki Takafumi  群馬大学, 大学院理工学府, 准教授 (20706725)

Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2023: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords指数型不定方程式 / 単数方程式 / ピライ型方程式 / Bakerの手法 / 部分空間定理 / 対数一次形式の理論 / 代数的無理数の有理近似 / 一般化されたフェルマー方程式 / ベキ剰余理論
Outline of Research at the Start

どの二つも互いに素である整数>1の三つ組み(A,B,C)に対し、指数型方程式A^x+B^y=C^zの正の整数解の個数の評価や、特別な場合におけるその解の決定について研究を行う。まず、解の個数についてはその最良評価を得ることを目指す。具体的には『(A,B,C)=(5,3,2),(3,5,2)の場合を除いて方程式は高々二つの解しか持たない』の証明を、I.Pink氏(Debrecen大学)と共同で取り組む。次に、特別な(A,B,C)に対し方程式の解の決定を行う。特に、ピタゴラス数の様な代数関係式を満たす場合や、ベキ剰余理論の応用に適した場合に関して研究を行う。

Outline of Final Research Achievements

For relatively prime positive integers A,B and C all greater than 1, I studied general estimates of the number of solutions (x,y,z) to the purely exponential Diophantine equation A^x+B^y=C^z, and I obtained some results. In the first year, I proved that there are at most 2 solutions to the equation, except for the case {A,B}={3,5} and C=2. This is regarded to be best possible. In the remaining years, I considered the problem of determining all cases with exactly two solutions, especially when fixing the value of C. In this direction, while the only known result so far was the result solving the case of C=2 by R. Scott (1993), I solved the problem for infinitely many values of C including 2.

Academic Significance and Societal Importance of the Research Achievements

現れる素因数の種類が始めから有限個に限定されている整数たちの間に成り立つ線形関係式は、整数論においてよく現れ、単数方程式と称される。本研究では、最も単純な単数方程式のいくつかを考察し、その解の個数の最良評価の研究に従事した。得られた研究成果は、「単数方程式は一般に解を持たない」という非常に重要な命題を支持するのものである。特に、1より大のどの二つも互いに素な自然数a,b,cに対し、方程式a^x+b^y=c^zの自然数解は、(a,b,c)=(3,5,2), (5,3,2)の場合を除いて、高々二つであることを証明して、この方程式の解の個数の最良評価を確立した。

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (14 results)

All 2024 2023 2022 2021 Other

All Int'l Joint Research (3 results) Journal Article (3 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 3 results) Presentation (8 results) (of which Int'l Joint Research: 5 results)

  • [Int'l Joint Research] University of Debrecen/Institute of Mathematics(ハンガリー)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] University of Debrecen/Institute of Mathematics(ハンガリー)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] University of Debrecen/Institute of Mathematics(ハンガリー)

    • Related Report
      2020 Research-status Report
  • [Journal Article] Number of solutions to a special type of unit equations in two unknowns2024

    • Author(s)
      Takafumi Miyazaki, Istvan Pink
    • Journal Title

      American Journal of Mathematics

      Volume: 146 Issue: 2 Pages: 295-369

    • DOI

      10.1353/ajm.2024.a923236

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Number of solutions to a special type of unit equations in two unknowns, II2024

    • Author(s)
      Takafumi Miyazaki, Istvan Pink
    • Journal Title

      Research in Number Theory

      Volume: 10 Issue: 2

    • DOI

      10.1007/s40993-024-00524-7

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] A purely exponential Diophantine equation in three unknowns2021

    • Author(s)
      Miyazaki Takafumi、Sudo Masaki、Terai Nobuhiro
    • Journal Title

      Periodica Mathematica Hungarica

      Volume: 84 Issue: 2 Pages: 287-298

    • DOI

      10.1007/s10998-021-00405-x

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Presentation] Number of solutions to a special type of unit equations in two unknowns III2024

    • Author(s)
      Takafumi Miyazaki, Istvan Pink
    • Organizer
      Diophantine Analysis and Related Fields 2024
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Number of solutions to a special type of Pillai’s equation2023

    • Author(s)
      Takafumi Miyazaki
    • Organizer
      25th Central European Number Theory Conference
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Number of solutions to a special type of Pillai’s equation2023

    • Author(s)
      Takafumi Miyazaki
    • Organizer
      解析的整数論とその周辺(2023年度RIMS共同研究(公開型))
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Number of solutions to a special type of unit equations in two unknowns II2022

    • Author(s)
      Takafumi Miyazaki
    • Organizer
      Number Theory Conference 2022
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] Number of solutions to a special type of unit equations in two unknowns II2022

    • Author(s)
      Takafumi Miyazaki
    • Organizer
      NUMBER THEORY SEMINAR (Number Theory Research Group University of Debrecen)
    • Related Report
      2022 Research-status Report
  • [Presentation] 純指数型不定方程式a^x+b^y=c^zの解の個数について2021

    • Author(s)
      宮崎 隆史
    • Organizer
      日本数学会2021年度秋季総合分科会
    • Related Report
      2021 Research-status Report
  • [Presentation] 三変数の純指数型不定方程式に関するScottの定理について2021

    • Author(s)
      宮崎 隆史
    • Organizer
      2021大分整数論研究集会
    • Related Report
      2021 Research-status Report
  • [Presentation] Number of solutions to some purely exponential Diophantine equation in three unknowns2021

    • Author(s)
      Takafumi Miyazaki
    • Organizer
      2021年度RIMS共同研究 (公開型) 解析的整数論とその周辺
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi