Submanifold theory related to the twistor space of quaternionic symmetric spaces
Project/Area Number |
20K03575
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 11020:Geometry-related
|
Research Institution | Ibaraki University |
Principal Investigator |
木村 真琴 茨城大学, 理工学研究科(理学野), 教授 (30186332)
|
Co-Investigator(Kenkyū-buntansha) |
入江 博 茨城大学, 理工学研究科(理学野), 准教授 (30385489)
大塚 富美子 茨城大学, 理工学研究科(理学野), 准教授 (90194208)
|
Project Period (FY) |
2020-04-01 – 2025-03-31
|
Project Status |
Granted (Fiscal Year 2022)
|
Budget Amount *help |
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2024: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2023: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
|
Keywords | ツイスター空間 / 四元数ケーラー構造 / ラグランジュ部分多様体 / 複素2平面グラスマン多様体 / 法線叢 / 複素2平面グラスマン多様体 / 実超曲面 / 四元数対称空間 / 部分多様体 |
Outline of Research at the Start |
リーマン幾何学において非常に重要かつ興味深い対象である「四元数対称空間」の「ツイスター空間」を用いて、部分多様体論を展開する。まず、複素2-平面グラスマン多様体の四元数ケーラー構造に関するツイスター空間の部分多様体から構成される、複素射影空間内のラグランジュ部分多様体や実超曲面について研究する。さらに、例外リー群に関する四元数対称空間の全複素部分多様体とのツイスター空間の部分多様体論を展開する。
|
Outline of Annual Research Achievements |
ツイスター空間は物理学から生まれてきたが、微分幾何学においても、例えばBryant によって4次元球面内の極小曲面を構成するのに用いられるなど、重要な役割を果たしてきた。研究代表者は、複素多様体の中でも最も良い性質をもつ、正則断面曲率が一定である「複素空間形」の実超曲面について研究してきた。先行研究として、正則断面曲率が正の定数である複素射影空間の実超曲面の中でもよい性質を持つホップ超曲面が、複素2平面グラスマン多様体の四元数ケーラー構造に関するツイスター空間を用いて構成できることを示した。別の先行研究で、正則断面曲率が負の定数である複素双曲空間の実超曲面について、不定値複素2平面グラスマン多様体への「ガウス写像」あるいは「法線叢」を考察することにより、複素双曲空間のホップ超曲面に対して、そのガウス写像の像が不定値複素2平面グラスマン多様体のパラ四元数ケーラー構造について、非常に良い性質をもつことが分かっている。複素双曲空間のホップ超曲面については、いくつか部分的な結果は知られていたが、統一的な研究はなされていなかった。今回日本数学会のジャーナル出版されることが決まった論文において、我々は不定値複素2平面グラスマン多様体のパラ四元数ケーラー構造に関する「3種類のツイスター空間」の水平部分多様体から、複素双曲空間内のホップ実超曲面が構成できることを明らかにした。関連して、複素射影空間内のラグランジュ部分多様体に関するプレプリントも執筆中である。
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
現在3編の論文が刊行予定である。また、韓国において2回の招待講演で研究成果を発表した。
|
Strategy for Future Research Activity |
四元数対称空間の部分多様体に関連して、複素球面内の部分多様体の研究を進めて行きたい。また、今まで研究してきた球面や複素射影空間内の部分多様体についても、まだまだ研究すべき課題が多々あるので、さらに進めて行きたい。
|
Report
(3 results)
Research Products
(16 results)