Surface group representations and geometry of negative curvature
Project/Area Number |
20K03610
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 11020:Geometry-related
|
Research Institution | Osaka University |
Principal Investigator |
馬場 伸平 大阪大学, 理学研究科, 准教授 (40822870)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Granted (Fiscal Year 2021)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 曲面群の表現 / 双曲幾何学 / 指標多様体 / リーマン面 / homogeneous spaces / holonomy representations / projective structures / hyperbolic geomegry / Riemann surfaces |
Outline of Research at the Start |
曲面は実際に可視化しやすく直感的に考えやすい幾何学的対象である。また、その理解を発展させることで、一般な幾何学的対象の発展に欠かせない研究対象である。局所等質構造と呼ばれる、どの点の近くも同じに見える構造を考える。曲面のトポロジーと呼ばれる大まかな形を固定して、その幾何学的な構造の空間を考える。この変形空間はたびたび解析的な構造を持っている。一方、各々の幾何構造はモノドロミー表現と呼ばれる代数的な構造をもっている。これは曲面の基本群からLie郡との表現がある。これらの解析的な構造と代数的な構造の関係性を相互に発展させる研究をおこなう。
|
Outline of Annual Research Achievements |
曲面群と負曲率の幾何に関連した以下に述べる2つの結果を得た。これらを論文にまとめ,プレプリントとしてarXiv上で一般に公開した。また,これらの結果を研究集会などで講演した。 まず3次元の多様体の分類において,双曲多様体を理解することは重要である。3次元のgeometrically finiteな双曲多様体は,理想境界のRiemann面の構造によってパラメラー付されることがよく知られている。これに類似したパラメター付を、双曲多様体のconvex core上のmeasured laminationによりできるという予想が未解決問題であるBonahonとOtalはこの予想の解決向けて,大きな貢献をしている。本年度の研究で大鹿健一氏との共同研究に別の視点から,より位相幾何学的なアプローチを与えた。特により一般のgeometrically infiniteな曲面群に既存の結果を拡張させた。 次にRiemann面上の2次正則微分の空間は、有限次元の複素ベクトル空間をなす。このベクトル空間は,対応する複素射影構造のホロノミーにより,基本群のP S L(2, C)への表現空間,つまりP S L(2,C)指標多様体に真に解析的に埋め込まれている。この像はPoincare Holonomy Variety またはsl(2,C)-operと呼ばれ,双曲幾何学などの関係から重要な複素解析的部分多様体である。私は,このholonomy varieties類似をThurstonによる複素射影構造のパラメター付の観点からP S L(2,C)指標多様体に構成した。また,Thurston のパラメター付は実解析的な部分多様体を与えることから,これの複素化を行った。そのために曲面群のP S L(2,C)の直積への表現のbending変形を導入した。
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
双曲幾何学と曲面の表現の関係に関して,新たな視点を与える結果を複数得て,論文にまとめることが出来たため。
|
Strategy for Future Research Activity |
曲面の基本群のLi群への表現,双曲幾何学に関して,新しい観点から理解を一層深める。
|
Report
(2 results)
Research Products
(4 results)