• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Time-frequency analysis of quaternion-valued functions.

Research Project

Project/Area Number 20K03653
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionOsaka Kyoiku University

Principal Investigator

Ashino Ryuichi  大阪教育大学, 教育学部, 教授 (80249490)

Co-Investigator(Kenkyū-buntansha) 萬代 武史  大阪電気通信大学, 共通教育機構, 教授 (10181843)
守本 晃  大阪教育大学, 教育学部, 教授 (50239688)
Project Period (FY) 2020-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2021: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2020: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Keywords不確定性原理 / 分数冪フーリエ変換 / 両側四元数フーリエ変換 / 時間周波数解析 / フーリエ変換 / Donoho-Strak の不確定性原理 / 四元数 / ウェーブレット解析
Outline of Research at the Start

まず,様々な四元数フーリエ変換の定義とそのときに成立する公式や手法のペアを調べ,カラー画像の解析したい性質に応じて適する四元数フーリエ変換を選ぶ.次に,選んだ四元数フーリエ変換の数値計算の方法やアルゴリズムを研究し,数値シミュレーションにより,選んだ四元数フーリエ変換の適不適を吟味する.さらに,選んだ四元数フーリエ変換を踏まえて,カラー画像の解析に適する四元数時間周波数解析の基礎理論を研究する.

Outline of Final Research Achievements

Hamilton's quaternion can express motion in three dimensions.Therefore, it is applied to 3D graphics, computer vision, and manipulation of robot arms.As a fundamental question, I am researching for the purpose of investigating what kind of properties the fractional Fourier transform satisfies among the properties that the Fourier transform satisfies.Fractional Fourier transform, Duality, Correlation analysis, Applications In addition, in the case of quaternion numerical functions, among the properties satisfied by the two-sided Fourier transform, for the purpose of finding out what kind of form it is, I have been researching how various properties and theorems known about the Fourier transform hold in the case of the fractional power Fourier transform.
One such theorem that I have studied in detail is the uncertainty principle.

Academic Significance and Societal Importance of the Research Achievements

フーリエ変換と分数冪フーリエ変換の関係を研究した.具体的には分数冪フーリエ変換では分数冪パラメータを持つ.従って分数冪パラメータを変更した場合に,不確定性原理がどのような変わるかを研究した.
扱う信号の時間(または位置)と周波数の情報を同時に詳しく調べることができないことが知られている.この「フーリエ変換」を別の変換である「分数冪フーリエ変換」に変更すればどうなるかを研究した.フーリエ変換と分数冪フーリエ変換の関係を研究した.具体的には分数冪フーリエ変換では分数冪パラメータを持つ.従って分数冪パラメータを変更した場合に,不確定性原理がどのような変わるかを研究した.

Report

(4 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (14 results)

All 2023 2022 2021 2020 Other

All Int'l Joint Research (2 results) Journal Article (7 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 5 results,  Open Access: 1 results) Presentation (5 results) (of which Int'l Joint Research: 3 results,  Invited: 1 results)

  • [Int'l Joint Research] Hasanuddin University(インドネシア)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] Hasanuddin University(インドネシア)

    • Related Report
      2021 Research-status Report
  • [Journal Article] Inequalities on the closeness of two vectors in a Parseval frame2023

    • Author(s)
      Ashino Ryuichi、Mandai Takeshi、Morimoto Akira
    • Journal Title

      Japan Journal of Industrial and Applied Mathematics

      Volume: 40 Issue: 2 Pages: 1329-1340

    • DOI

      10.1007/s13160-023-00578-7

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Fractional Fourier Transform: Duality, Correlation Theorem and Applications2022

    • Author(s)
      M. Bahri and R. Ashino
    • Journal Title

      2022 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)

      Volume: -

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A New form of Plancherel Theorem for Two-Sided Quaternion Fourier Transform2022

    • Author(s)
      M. Bahri and R. Ashino
    • Journal Title

      2022 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)

      Volume: - Pages: 31-34

    • DOI

      10.1109/icwapr56446.2022.9947132

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Linear canonical wavelet transform: Properties and inequalities2021

    • Author(s)
      Mawari Bahri, Ryuichi Ashino
    • Journal Title

      International Journal of Wavelets, Multiresolution and Information Processing

      Volume: 19/6 Issue: 06 Pages: 1-19

    • DOI

      10.1142/s0219691321500272

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] On uncertainty principles for the fractional Fourier transform2021

    • Author(s)
      Mawari Bahri, Ryuichi Ashino
    • Journal Title

      INFORMATION

      Volume: 24/2 Pages: 85-92

    • NAID

      40022667936

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Solving Generalized Wave and Heat Equations Using Linear Canonical Transform and Sampling Formulae2020

    • Author(s)
      Bahri Mawardi、Ashino Ryuichi
    • Journal Title

      Abstract and Applied Analysis

      Volume: 2020 Pages: 1-11

    • DOI

      10.1155/2020/1273194

    • Related Report
      2020 Research-status Report
  • [Journal Article] An Inequality for Linear Canonical Transform2020

    • Author(s)
      Bahri Mawardi、Ashino Ryuichi
    • Journal Title

      Sensor Networks and Signal Processing Proceedings of the 2nd Sensor Networks and Signal Processing,

      Volume: (SNSP 2019 Pages: 311-323

    • DOI

      10.1007/978-981-15-4917-5_24

    • ISBN
      9789811549168, 9789811549175
    • Related Report
      2020 Research-status Report
  • [Presentation] Inequalities on the closeness of two vectors in a Parseval frame2022

    • Author(s)
      Ashino Ryuichi、Mandai Takeshi、Morimoto Akira
    • Organizer
      応用数理学会
    • Related Report
      2022 Annual Research Report
  • [Presentation] Fractional Fourier Transform: Duality, Correlation Theorem and Applications2022

    • Author(s)
      M. Bahri and R. Ashino
    • Organizer
      2022 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A New form of Plancherel Theorem for Two-Sided Quaternion Fourier Transform2022

    • Author(s)
      M. Bahri and R. Ashino
    • Organizer
      2022 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Berenstein theorem related to two-sided quaternion Fourier transform2021

    • Author(s)
      Ryuichi Ashino
    • Organizer
      ISAAC Congress
    • Related Report
      2021 Research-status Report
  • [Presentation] Some Properties of Fractional Wavelet Transform and its Relation to Conventional Wavelet Transform2020

    • Author(s)
      Ryuichi Ashino
    • Organizer
      The Third International Conference on Mathematical Characterization, Analysis and Applications of Complex Information (CMCAA 2020) Sept 11th - Sept 13th 2020, Beijing, China
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2020-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi