• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research of difference equations in the complex domains and its applications

Research Project

Project/Area Number 20K03658
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionThe Open University of Japan

Principal Investigator

Ishizaki Katsuya  放送大学, 教養学部, 教授 (60202991)

Co-Investigator(Kenkyū-buntansha) 藤解 和也  金沢大学, 電子情報通信学系, 教授 (30260558)
Project Period (FY) 2020-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2022: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2021: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
KeywordsDifferential equations / Exponential polynomials / Functional equations / Nevanlinna theory / Difference equations / Wiman-Valiron theory / Growth of order / Stothers-Mason theorem / Fermat equations / Newton polygon / Order of growth / Entire functions / Fermat type equations / difference radical / differential equations / difference equations / shifting zero / exponential polynomials / Fermat型函数方程式 / 有理型函数論 / 整函数論 / Nevanlinna理論 / Stothers-Masonの定理 / 差分radical / 複素微分方程式 / 複素差分方程式 / 離散函数方程式 / 差分方程式 / 有理形函数論 / Binomial級数
Outline of Research at the Start

本研究では主に差分方程式を複素数平面上での領域で取り扱う。ある種の高階非線形差分方程式の集合から整函数解,有理型函数解をもつための必要条件を求め,解を持つ可能性のある候補となる形を検出する。また,古典的な方法と近年発達した方法を融合させ,有理型函数解が存在するための十分条件を見いだす。実際には,Binomial級数による局所解を構成することから導く。局所解は差分数方程式を利用して解析接続して大域解を構成していく。さらに,応用として,差分Bessel方程式などより広い分野への波及効果のある差分方程式の性質を調べる。

Outline of Final Research Achievements

By means of the Nevanlinna theory, we obtained several results on the existence of meromorphic solutions to linear differential equations and linear difference equations, in which we discussed the value distribution and the order of growth of meromorphic solutions. In particular, we investigated the properties on the value distribution of solutions in connection with the those of coefficients when exponential polynomials are included in the coefficients. We also have been concerned with some open questions of the Fermat type functional equations and difference analogues of them, and obtained partial answers to these questions and gave alternative proofs of some known results. Further, we introduced the idea of the difference radical and proved the difference analogues of the Stothers-Mason theorem.

Academic Significance and Societal Importance of the Research Achievements

20世紀前半に確立されたNevanlinna理論は、線型・非線型を問わず複素領域での微分方程式の有理型函数解を調べることに対して有効である。しかしながら、差分方程式やFermat型方程式などの函数方程式を取り扱うためには、Nevanlinna理論のそれぞれの方程式に対応する新たな展開が必要である。本研究は、基礎を支える理論構築と応用面の新技法提案からなる上昇螺旋を描き、自然科学における基礎研究の重要さを記述していると期待する。

Report

(4 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (17 results)

All 2022 2021 2020 Other

All Int'l Joint Research (7 results) Journal Article (8 results) (of which Int'l Joint Research: 7 results,  Peer Reviewed: 7 results,  Open Access: 1 results) Presentation (2 results) (of which Int'l Joint Research: 1 results,  Invited: 1 results)

  • [Int'l Joint Research] University of Eastern Finland(フィンランド)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] Shantou University(中国)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] University of Eastern Finland(フィンランド)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] Shantou University(中国)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] University of Eastern Finland(フィンランド)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] University of New Orleans(米国)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] Qilu Normal University/Shantou University(中国)

    • Related Report
      2020 Research-status Report
  • [Journal Article] Value distribution of exponential polynomials and their role in the theories of complex differential equations?and oscillation theory2022

    • Author(s)
      Heittokangas Janne、Ishizaki Katsuya、Tohge Kazuya、Wen Zhi‐Tao
    • Journal Title

      Bulletin of the London Mathematical Society

      Volume: 55 Issue: 1 Pages: 1-77

    • DOI

      10.1112/blms.12719

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Dual exponential polynomials and a problem of Ozawa2022

    • Author(s)
      Heittokangas Janne、Ishizaki Katsuya、Tohge Kazuya、Wen Zhi-Tao
    • Journal Title

      Proceedings of the Royal Society of Edinburgh: Section A Mathematics

      Volume: 152 Issue: 3 Pages: 701-719

    • DOI

      10.1017/prm.2021.29

    • Related Report
      2022 Annual Research Report
  • [Journal Article] Difference radical in terms of shifting zero and applications to the Stothers-Mason theorem2021

    • Author(s)
      Ishizaki Katsuya、Wen Zhi-Tao
    • Journal Title

      Proceedings of the American Mathematical Society

      Volume: 150 Issue: 02 Pages: 731-745

    • DOI

      10.1090/proc/15703

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Binomial series and complex difference equations2021

    • Author(s)
      Ishizaki Katsuya、Wen Zhi-Tao
    • Journal Title

      Journal of Mathematical Analysis and Applications

      Volume: 497 Issue: 1 Pages: 124844-124844

    • DOI

      10.1016/j.jmaa.2020.124844

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Exponential polynomials in the oscillation theory2021

    • Author(s)
      Heittokangas Janne、Ishizaki Katsuya、Laine Ilpo、Tohge Kazuya
    • Journal Title

      Journal of Differential Equations

      Volume: 272 Pages: 911-937

    • DOI

      10.1016/j.jde.2020.10.015

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] A Stothers-Mason theorem with a difference radical2020

    • Author(s)
      Ishizaki Katsuya、Korhonen Risto、Li Nan、Tohge Kazuya
    • Journal Title

      Mathematische Zeitschrift

      Volume: - Issue: 1-2 Pages: 671-696

    • DOI

      10.1007/s00209-020-02604-7

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Restrictions on meromorphic solutions of Fermat type equations2020

    • Author(s)
      Gundersen Gary G.、Ishizaki Katsuya、Kimura Naofumi
    • Journal Title

      Proceedings of the Edinburgh Mathematical Society

      Volume: 63 Issue: 3 Pages: 654-665

    • DOI

      10.1017/s001309152000005x

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Complex oscillation of solutions of a third order ODE2020

    • Author(s)
      Hinkkanen Aimo、Ishizaki Katsuya、Laine Ilpo、Li Kin Y.
    • Journal Title

      Annales Academiae Scientiarum Fennicae Mathematica

      Volume: 45 Issue: 1 Pages: 451-466

    • DOI

      10.5186/aasfm.2020.4527

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Meromorphic solutions of Fermat type functional equations2022

    • Author(s)
      石崎 克也・木村 直文
    • Organizer
      等角写像・値分布論 合同研究集会
    • Related Report
      2022 Annual Research Report
  • [Presentation] Meromorphic solutions of Fermat type equations2021

    • Author(s)
      Ishizaki Katsuya
    • Organizer
      Complex Analysis video seminars
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2020-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi