• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Ergodic theory of number theoretical transformations based on geometric analysis of structure of graphs

Research Project

Project/Area Number 20K03661
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionKeio University

Principal Investigator

Nakada Hitoshi  慶應義塾大学, 理工学部(矢上), 名誉教授 (40118980)

Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2021: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords連分数変換 / エルゴード理論 / Farey グラフ / 虚二次体 / 虚2次体
Outline of Research at the Start

A. F. Beardon、M. Hockman 達はFareyグラフを通して連分数展開のgeodesicの概念を導入した。本研究ではその概念を用いて測度論的あるいは確率論的研究に有効な手法を開発しこの分野に新たな展開を与える。また G. A. Jones, D. Singerman, K. Wicks 達の研究を発展させた幾つかの複素数に関する研究では3次元双曲空間での表現でも同様に測度論的、確率論的側面を連分数変換の手法に取り入れる。これらを通してグラフ理論を通した新たなエルゴード理論的な取り扱いを数論的変換一般に確立させる。

Outline of Final Research Achievements

In this project, we studied some ergodic and probabilistic properties of various types of continued fraction maps concerning to the sturucture of the Farey graph. In particular, we constructed the natural extensions of complex continued fraction maps of the nearest integer type associated with the Euclidean imaginary quadratic fields. The extension maps are defined on the set of geodesics on the upper-half space. Concerning the real number case, we showed that the range of alpha of the maximun value of the entropy of the alpha-continued fraction maps. This gives the answer to the question by C. Kraaikamp, T. Schmidt and W. Steiner.

Academic Significance and Societal Importance of the Research Achievements

連分数の数論的側面と双曲空間上の測地線の関係はある程度知られていたが、本研究成果によりさらに Fareyグラフとその上の測地線の概念を利用することにより、この分野の研究に新たな展開を見せることに成功した。これにより、連分数の研究における数論、双曲幾何、グラフ理論など様々な側面の関連が見通せるようになった。今後、複素連分数の研究の進展に新たな道筋を示すことができた。

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (11 results)

All 2023 2022 2021 Other

All Int'l Joint Research (6 results) Journal Article (4 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 4 results) Presentation (1 results) (of which Invited: 1 results)

  • [Int'l Joint Research] Delft University of Technology/Utrecht University(オランダ)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] Delft University of Technology(オランダ)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] Delft University of Technology/University of Amsterdam(オランダ)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] CNRS(フランス)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] CNRS(フランス)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] Delft University of Technology(オランダ)

    • Related Report
      2020 Research-status Report
  • [Journal Article] ON THE ERGODIC THEORY OF MAPS ASSOCIATED WITH THE NEAREST INTEGER COMPLEX CONTINUED FRACTIONS OVER IMAGINARY QUADRATIC FIELDS2023

    • Author(s)
      Hiromi Ei, Hitoshi Nakada, Rie Natsui
    • Journal Title

      Discrete and Continuous Dynamical Systems

      Volume: 43(11) Issue: 11 Pages: 3883-3924

    • DOI

      10.3934/dcds.2023071

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On the existence of the Legendre constants for some complex continued fraction expansions over imaginary quadratic fields2022

    • Author(s)
      Hiromi Ei, Hitoshi Nakada, Rie Natsui
    • Journal Title

      Journal of Number Theory

      Volume: 238 Pages: 106-132

    • DOI

      10.1016/j.jnt.2021.08.004

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Analysis of generalized continued fraction algorithms over polynomials2021

    • Author(s)
      Valerie Berthe, Hitoshi Nakada, Rie Natsui, Brigitte Vallee
    • Journal Title

      Finite Fields and Their Applications

      Volume: 73 Pages: 101849-101849

    • DOI

      10.1016/j.ffa.2021.101849

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] On the ergodic theory of Tanaka--Ito type α-continued fractions2021

    • Author(s)
      Hitoshi Nakada, Wolfgang Steiner
    • Journal Title

      Tokyo Journal of Mathematics

      Volume: 44-2 Issue: 2

    • DOI

      10.3836/tjm/1502179343

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] On continued fraction maps acting on the Farey graph2022

    • Author(s)
      Nakada Hitoshi
    • Organizer
      Recent Progress in Ergodic Theory
    • Related Report
      2021 Research-status Report
    • Invited

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi