Project/Area Number |
20K03661
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 12010:Basic analysis-related
|
Research Institution | Keio University |
Principal Investigator |
Nakada Hitoshi 慶應義塾大学, 理工学部(矢上), 名誉教授 (40118980)
|
Project Period (FY) |
2020-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2021: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
|
Keywords | 連分数変換 / エルゴード理論 / Farey グラフ / 虚二次体 / 虚2次体 |
Outline of Research at the Start |
A. F. Beardon、M. Hockman 達はFareyグラフを通して連分数展開のgeodesicの概念を導入した。本研究ではその概念を用いて測度論的あるいは確率論的研究に有効な手法を開発しこの分野に新たな展開を与える。また G. A. Jones, D. Singerman, K. Wicks 達の研究を発展させた幾つかの複素数に関する研究では3次元双曲空間での表現でも同様に測度論的、確率論的側面を連分数変換の手法に取り入れる。これらを通してグラフ理論を通した新たなエルゴード理論的な取り扱いを数論的変換一般に確立させる。
|
Outline of Final Research Achievements |
In this project, we studied some ergodic and probabilistic properties of various types of continued fraction maps concerning to the sturucture of the Farey graph. In particular, we constructed the natural extensions of complex continued fraction maps of the nearest integer type associated with the Euclidean imaginary quadratic fields. The extension maps are defined on the set of geodesics on the upper-half space. Concerning the real number case, we showed that the range of alpha of the maximun value of the entropy of the alpha-continued fraction maps. This gives the answer to the question by C. Kraaikamp, T. Schmidt and W. Steiner.
|
Academic Significance and Societal Importance of the Research Achievements |
連分数の数論的側面と双曲空間上の測地線の関係はある程度知られていたが、本研究成果によりさらに Fareyグラフとその上の測地線の概念を利用することにより、この分野の研究に新たな展開を見せることに成功した。これにより、連分数の研究における数論、双曲幾何、グラフ理論など様々な側面の関連が見通せるようになった。今後、複素連分数の研究の進展に新たな道筋を示すことができた。
|